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1. Preface

1.1 About this Guide
The Velocity Users Guide is intended to help page designers and content providers get acquainted with Velocity and the

syntax of its simple yet powerful scripting language, the Velocity Template Language (VTL). Many of the examples

in this guide deal with using Velocity to embed dynamic content in web sites, but all examples are equally applicable

to other pages and templates.

Thanks for choosing Velocity!

1.2 Acknowledgements
This guide has been compiled from the xdoc Version which was included with Velocity up to version 1.4. We explicitly

acknowledge the efforts of all the contributors, especially Jason Van Zyl and John Castura in preparing this first version.

1.3 Intended Audience
This guide is for you if you want to learn how to use the Velocity Templating Language (VTL). It is intended for

designers, template writers and developers that are familiar with creating content templates or web pages. If you want

to embed the Velocity engine into your own application, you probably want to consult the Velocity Developers Guide

available from http://velocity.apache.org/ and use this guide as a reference.

1.4 Feedback
If you encounter any mistakes in this manual or have other feedback related to the Velocity Users Guide, please send

email to one of the Velocity mailing lists:

<user@velocity.apache.org>

This mailing list is intended for discussion about using Velocity, e.g. writing templates or integrating Velocity into

your application. If you need clarification about the content of this guide or have questions about the examples,

please send them to this list.

<dev@velocity.apache.org>

This mailing list is intended for discussion about developing Velocity itself. If you found a mistake in this guide,

want to improve its contents or the formatting framework, please use this mailing list.

Please check also the Velocity Homepage located at http://velocity.apache.org/ for up-to-date

information, new releases and general Velocity information.
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2. What is Velocity?
The Apache Velocity templating engine (or short Velocity is a template engine written in 100% pure Java. It permits

web page designers to reference methods defined in Java code. Template developers can work in parallel with Java

programmers to develop web sites according to the Model-View-Controller (MVC) model, meaning that they can

focus solely on creating templates, and programmers can focus solely on writing Java code. Velocity separates Java

code from the template pages, making a project more maintainable over the long run.

In a web context, Velocity provides a viable alternative to Java Server Pages (JSPs) or PHP.

Velocity can be used to generate web pages, Java source code, SQL, PostScript and other output from templates. It

can be used either as a standalone utility for generating source code and reports, or as a component integrated into

frameworks or larger applications.

Velocity provides template services for a number of other projects, e.g. the Turbine web application framework

(http://jakarta.apache.org/turbine/). In this context, Velocity offers a template service that allows

development of web applications according to a true MVC model.

2.1 The Fruit Store
Suppose you are a page designer for an online store that specializes in selling fruits. Let's call it The Online Fruit

Store. Customers place orders for various types and quantities of fruits. They login to your site using their username

and password, which allows them to view their orders and buy more fruits. Right now, apples on sale, which are very

popular. A minority of your customers regularly buy mangos, which are also on sale, though not as popular and usually

relegated to the margin of your web page. Information about each customer is tracked in a database, so one day the

question arises: Why not use Velocity to target special deals on fruit to the customers who are most interested in those

types of fruits?

Velocity makes it easy to customize web pages to your online visitors. As a web site designer at The Online Fruit

Store, you will modify the web page that the customer sees after logging into your site.

You meet with software engineers at your company, and everyone has agreed that $customer will hold information

pertaining to the customer currently logged in and that $fruitSpecial will be all the types of fruit on sale at

present. The $promoTool object contains methods that help with promotion.

For the task at hand, let's concern ourselves only with these three references. Remember, you don't need to worry about

how the software engineers extract the necessary information from the database, you just need to know that it works.

This lets you get on with your job, and lets the software engineers get on with theirs.

The next example shows how to display promotions using Velocity.
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<html>

  <body>

Hello $customer.Name!

    <table>

      #foreach( $fruit in $fruitSpecial )

        #if ( $customer.hasPurchased($fruit) )

          <tr>

            <td>

              $promoTool.getPromo($fruit)

            </td>

          </tr>

        #end

      #end

    </table>

  </body>

</html>

Example 2.1 Displaying the promotions for the Fruit Store

The exact details of the #foreach and #if directive will be described in greater depth in the directives chapter;

what is important is the impact this short piece of code has on your web site. When a customer with a penchant for

mangos logs in, and mangos are on sale, that is what this customer will see, prominently displayed. If another customer

with a long history of apple purchases logs in, the notice of an apple sale will be front and center. The flexibility of

Velocity is enormous and limited only by your creativity.

This manual should help you get started with Velocity and the Velocity Template Language. It has a companion

manual, the Velocity Developers Guide, which describes how to integrate Velocity into your own web applications

(this is what the software engineers at your company want to read).

2.2 An introduction to the Velocity Template
Language
The Velocity Template Language (VTL) is meant to provide an easy, simple and clean way to incorporate dynamic

content in a web page. Even a web page developer with little or no programming experience will soon be capable of

using VTL to incorporate dynamic content in a web site.

VTL uses references to embed dynamic content in a web site, and a variable is one type of reference. They can refer

to something defined in the Java code, or it can get its value from a VTL statement in the web page itself.

#set( $a = "Velocity" )

Example 2.2 A simple VTL statement

This VTL statement begins with the # character and contains a directive: set. When an online visitor requests your

web page, Velocity will search through your web page to find all # characters, then determine which mark the beginning

of VTL statements, and which of the # characters that have nothing to do with VTL.
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The # character is followed by a directive, set. The set directive uses an expression (enclosed in brackets) -- an

equation that assigns a value to a reference. The reference is listed on the left hand side and its value on the right hand

side; the two are separated by an = character.

In the example above, the reference is $a and the value is Velocity. A reference always begins with the $ character.

The value on the right side represents a string value. These are always enclosed in quotes, either single or double

quotes. Single quotes will ensure that the quoted value will be assigned to the reference as is. Double quotes allow

you to use Velocity references ot interpolate, such as "Hello $name", where the $name will be replaced by its

current value before that string literal is assigned to the left hand side of the =.

The following rule of thumb may be useful to better understand how Velocity works: References begin with $ and are

used to get something. Directives begin with # and are used to do something.

In the example above, #set is used to assign a value to a reference. The reference, $a, can then be used in the template

to output Velocity.

2.3 Hello Velocity World!
Once a value has been assigned to a reference, you can use it anywhere in your HTML document. In the following

example, a value is assigned to $name and later referenced.

<html><body>

#set( $name = "Velocity" )

Hello $name World!

</body></html>

Example 2.3 "Hello World" using Velocity

The result is a web page that reads

Hello Velocity World!

To make statements containing VTL directives more readable, we encourage you to start each VTL statement on a

new line, although you are not required to do so.
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3. Language elements
Like other formal languages, Velocity consists of a number of elements:

• Statements and Directives

• References

• Comments

Each of these elements will be introduced in this chapter.

3.1 Statements and directives
Velocity directives are language elements than allow the template designer to manipulate the rendering of the template.

A directive is part of a Velocity statement:

## Velocity single-line statement

#❶set❷($a = 10)❸

## Velocity multi-line statement

#❹foreach❺($i in [0..10])❻

  Counter is $i ❼

#end❽

❶❹ Begin of Velocity statement (hash symbol)

❷❺ Velocity directive

❸❻ Expression in brackets

❼ Multi-line statement body

❽ Multi-line statement end

Velocity knows about single-line statements and multi-line statements.

A single-line statement starts with a single # character, followed by directive itself. Some directives also take

parameters in brackets. A single-line statement then ends immediately.

#set($name = "apple")

#include("header.html")

#parse("header.vm")

#stop

Example 3.1 Velocity single-line statements
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A multi-line statement starts like a single-line statement, but also has a statement body. This body ends with #end1.

#foreach($i in [1..10])

  The count is $i

#end

#literal

 This is a literal block of text

#end

#if ($fruit == "apple")

  This is an apple.

#else

  This is not an apple.

#end

Example 3.2 Velocity multi-line statements

Note

The #if/#else/#end combo is a special case because it might contain multiple statement bodies

between its elements.

If you need to explicitly separate a Velocity directive from surrounding text, it is possible to wrap it in curly braces

({ and }):

#{set}($name = "apple")

#{foreach}($i in [1..10])

 The count is $i

#{end}

Example 3.3 Velocity directives in formal notation

All available Velocity directives are listed in the directives chapter.

Note

While the hash sign is technically not part of the directive, we will still speak about the #if or #set

directive in the latter chapters.

1Technically speaking, the opening statement and #end can be on the same line. We will still call it a multi-line statement.
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3.2 References
Velocity references are the glue which connect templates to the application. Template designers and application

developers must agree on a common set of references used by the Java application and the Velocity templates. Every

Velocity reference represents a Java object.

A Velocity reference starts with a $ character followed by an identifier name.

## Simple reference

The total amout is $total.

## Property reference

You currently have $cart.items Items in your Shopping cart.

## Method reference

We offer you a discount of $cart.calculateDiscount() for your purchase.

## Creating a new reference from Velocity

#set($linesPerPage = 20)

Example 3.4 Velocity references

If you need to separate a reference identifier name from the surrounding template, you can wrap the reference identifier

in curly braces ({ and }):

The total amout is ${total}.

You currently have ${cart.items} Items in your Shopping cart.

Example 3.5 Formal velocity references

Velocity references are discussed in depth in the references chapter.

3.3 Comments
Comments allow descriptive text to be included in a template that is not placed into the output of the template engine.

Comments are a useful way of reminding yourself and explaining to others what your VTL code is doing, or any other

purpose you find useful.

Like the Java programming language, Velocity has single-line and block comments.

A single-line comment begins with ## and finishes at the end of the line.
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## This is a single-line comment.

This is visible in the output ## This is a comment.

Example 3.6 Single-line comments

If you are going to write a few lines of commentary, there is no need to have numerous single-line comments. Multi-line

comments, which begin with #* and end with *#, are available to handle this scenario:

This is text that is outside the multi-line comment.

Online visitors can see it.

#*

  Thus begins a multi-line comment. Online visitors will not

  see this text because the Velocity templating engine will

  ignore it.

*#

Here is text outside the multi-line comment; it is visible.

Example 3.7 A multi-line comment

Multi-line comments can start and end in arbitrary columns of the template.

There is a third type of comment, the VTL comment block, which may be used to store such information as the

document author and versioning information. It is similar to the Javadoc comment block in the Java programming

language and starts with #**.

#**

This is a VTL comment block and

may be used to store such information

as the document author and versioning

information:

@author

@version 5

*#

Example 3.8 A VTL comment block
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3.4 Escaping VTL elements
Most of the time, there is no problem, rendering a Velocity template because the rendering engine is quite smart about

finding Velocity statements and references and distinguishing them from regular text.

## Renders as normal text, because the dollar sign 

## is not followed by a letter.

I bought a 4 lb. sack of potatoes for only $2.50!

## Renders as variable

I bought a 4 lb. sack of potatoes for only $money.

Example 3.9 Distinguishing between text and references

Velocity allows for explicit escaping of references and directives using the \ (backslash) character. If the character

following the \ would start a new directive or reference, then this character is output verbatim. This can lead to some

unexpected behaviour, especially with directives.

\         ## Renders as a single backslash (no # or $ follows)

\\ \# \$  ## Renders as \\ \# \$ (no directive or reference follows)

\#end     ## Renders as #end, backslash escapes an existing directive

Example 3.10 VTL escaping examples

Unfortunately, the escaping of VTL elements contains a number of quirks that make them actually hard to use2. As

you have seen, the behaviour of the \ differs whether a directive or just text follows:

$a     ## $a is a reference but an unbound one (it has no value)

       ## This renders as $a in the output

\$a    ## Escaping an unbound reference renders it as \$a

#set($a = 10)  ## When a value is assigned to the reference...

$a     ## ... then it renders as 10 ...

\$a    ## ... and gets escaped and now renders as $a.

Example 3.11 Escaping VTL references

2It is really mind-boggling how we came up with this. It is tied more to the internal workings of the Velocity engine than any user-friendlyness.

This is definitely subject to change in future Velocity versions. Until then, please be kind to our mistakes.
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Escaping VTL statements works in the same way.

\#end    ## Renders as #end

\# end   ## Renders as \# end (note the space)

\#set ($a = 10) ## Renders as #set ($a = 10)

## If $a has been assigned a value:

#set ($a = 10)

\#set ($a = 20) ## Renders as #set (10 = 20)

## The backslash does not escape a whole multi-line statement

## This is a syntax error: (#end without a starting statement)

\#if ($a == 10)

#end

Example 3.12 Escaping VTL statements

Using Velocity Macros, the behaviour of escaping # changes a bit:3

#apple    ## Renders as #apple, because it is not a VTL

          ## statement

\#apple   ## Renders as \#apple

#macro(apple)

 Apple

#end

#apple    ## This is now a syntax error

          ## (#apple Velocimacro invocation needs brackets)

#apple()  ## Renders as Apple (invocation of a Velocimacro)

\#apple   ## renders as #apple, because it is now a VTL

          ## statement after Velocimacro definition.

Example 3.13 Escaping Velocimacros

3...and you probably thought, the worst part was over...
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4. References
There are three types of references in the VTL: variables, properties and methods. They are the glue that connects

the business logic of your application written in Java to your templates. The Java code and the templates must use the

same set of references, so you as a template designer and the developers writing the application logic must agree on

the references available for use on the templates.

Every reference that is output when a template is rendered, is converted to a Java string by calling the toString()

method on the Java object which represents the reference. If you want a reference rendered in a special way, you can

ask your Java developers to implement or override this method.

4.1 Identifiers
All references consist of a leading $ character followed by a VTL identifier. A VTL identifier must start with an

alphabetic character (a..z or A..Z). The rest of the characters are limited to the following types of characters:

• alphabetic (a..z, A..Z)

• numeric (0..9)

• hyphen and underscore (- and _)

Velocity identifiers are, just as Java variable names, case-sensitive.

4.2 Variables
Variables are the simplest type of references, because each reference is also a variable. Each variable represents a

Java object.

$foo

$bar

$foo-bar

$foo_bar

$fooBar1

Example 4.1 Valid variable names

Velocity keeps an internal map from identifiers to variables called the context. The is the place where Java code can

put objects to be referenced from the template.

A variable must be assigned a value before it can be referenced from the template. Assigning a value to a Velocity

variable is the same as placing an object in the context from the Java code of your application.

## Puts a String object representing "bar" in the context

#set( $foo = "bar" )

Example 4.2 Creating a new context object
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Note

Assigning a new value using the #set statement to a variable does change the object present in the context.

4.3 Properties
Velocity allows you to access properties through a short-hand notation. The objects to look up the properties must be

available through a Velocity variable and the notation consists of a leading variable followed by the dot (".") character

and another VTL identifier.

$customer.address

$purchase.total

$cart.customerDiscount

Example 4.3 Valid property names

A property name can represent the following elements depending on the object used for look-up:

• If the object has a method get<property> where the property name is not modified, this method is invoked

• else if the object is a Java bean (has methods conforming to the Sun Java Bean specification for accessing bean

properties), the bean getter is executed to access the value

• finally if the object used to look up the property has a get(String) method, invoke this method.

Take the first example, $customer.address. It can have multiple meanings:1

• when the object has a method getaddress(), invoke this method

• when the object is a Java bean with a property address, invoke its getter, getAddress()

• when the object has a method get(String), invoke this method, passing address as parameter.

• when the object has a method isAddress(), invoke this method.

Note

When a property name refers to a getter method, $obj.property and $obj.Property will both

invoke the same method (either getproperty() or getProperty()). However, if the object

represented by $obj has a get(String) method, $obj.property and $obj.Property will

pass different values to this get(String) method. This can lead to hard-to-find problems.

It is a good practice to standardize the capitalization of property names in your application2.

If you wonder about setting property values, please look up the #set() directive chapter. The setting of properties

is discussed there.

1The sequence of these lookups is determined by the Velocity Uberspector. This is merely the default lookup. A Java developer can customize

this behaviour by using a custom Uberspector.
2While lots of the available Velocity literature uses upper-case capitalization, it is actually a good idea to use lower-case capitalization as this is

consistent with JSTL and the regular bean property notation.
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Default property lookup rules

Velocity is quite clever when figuring out which method corresponds to a requested property3. It tries out different

alternatives based on several established naming conventions. The exact lookup sequence depends on whether or

not the property name starts with an upper-case letter. For lower-case names, such as $customer.address, the

sequence is:

• getaddress()

• getAddress()

• get("address")

• isAddress()

For upper-case property names like $customer.Address, it is slightly different:

• getAddress()

• getaddress()

• get("Address")

• isAddress()

As regular bean properties tend to be written in lowercase notation, you should talk to your programmers that they

don't add both lower-case and upper-case methods to their objects. It would be a bad idea anyway.

Caution

There are some exotic naming cases, such as a property starting with multiple upper-case letters which are

treated specially according to the Java Bean specification. Velocity does not conform to this specification

to the last letter, so if you have a method called getURL(), you cannot use $obj.url to invoke the

method, you must use $obj.URL or $obj.uRL. This might change in future versions of Velocity.

3Some people would say that it is entirely too clever.
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4.4 Methods
A method is part of a context object, written in Java code, and is capable of doing something useful, like running a

calculation or arriving at a decision. Method invocation is indicated by round parentheses following the method name.

These parentheses can optionally contain a parameter list.

$cart.calculateTotal()

$customer.updatePurchases($cart)

$shop.checkInventory()

$cart.addTaxes(8, 16)

# Property access

$page.setTitle( "My Home Page" )

$customer.getAddress()

$purchase.getTotal()

Example 4.4 Valid method references

The last few examples are similar to the examples seen earlier when discussing properties. As stated there, the

properties notation is a short-hand notation for the invocation of bean getters and setters4.

The main difference between properties and methods is that you can specify a parameter list to a method.

$shop.getFruits()

$sun.getPlanets()

$album.get("logo")

$shop.setCustomer($customer)

$sun.setPlanetCount(9)

$album.put("logo", "newlogo")

## equal property getters and setters

$shop.fruits

$sun.Planets

$album.logo

#set ($shop.customer = $customer)

#set ($sun.planetCount = 9)

#set ($album.logo = "New Logo")

Example 4.5 Methods that can be used with shorthand notation

4By explicitly stating the method name and parameters, the Uberspector is not used. This is useful if you object has both, get(String) and

explicit property getter methods.
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Warning

The last #set example will not work in Velocity versions before 1.5 unless the $album object

implements java.util.Map. This is a bug in older Velocity versions.

Not every method invocation can be replaced by short hand notation. Even if a method is called set<property>()

or get<property>(), it must still adhere to bean getter and setter method signatures.

## Can't pass a parameter with $sun.planet

$sun.getPlanet(3)

## Velocity only allows shorthand notation for getter and setter

$shop.orderFruits()

## Can't pass a parameter list

$book.setAuthorAndTitle("George Orwell", "Homage to Catalonia")

Example 4.6 Methods that can not be used with shorthand notation

4.5 Reference miscellany

Separating identifiers and template text
When writing templates, you might encounter situations in which it is necessary to explicitly separate a reference from

the surrounding template text. In the examples above, this was done implicitly through whitespace. Additionally there

is a formal notation which wraps the identifiers with curly braces:

${fruit}

${customer.address}

${purchase.getTotal()}

Example 4.7 Formal notation for Velocity references

Suppose you were building an extension to your fruit shop where juices are sold. $fruit contains the name of the

juice which should be sold. Using the shorthand notation would be inadequate for this task. Consider the following

example:

You have selected $fruitjuice.

Example 4.8 An ambiguous reference name

There is ambiguity here, and Velocity assumes that $fruitjuice, not $fruit, is the identifier that you want to use.

Finding no value for $fruitjuice, it will return $fruitjuice. Using formal notation can resolve this problem.

You have selected ${fruit}juice.

Example 4.9 Using formal notation to resolve ambiguity
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Now Velocity knows that $fruit, not $fruitjuice, is the reference. Formal notation is often useful when

references are directly adjacent to text in a template.

Quiet reference notation

When Velocity encounters an undefined reference, its normal behavior is to output the image of the reference. For

example, suppose the following reference appears as part of a VTL template.

<input type="text" name="email" value="$email"/>

Example 4.10 A web input form without quiet notation

When the form initially loads, the variable reference $email has no value, but you probably prefer a blank text field

to one with a value of $email. Using the quiet reference notation circumvents Velocity's normal behavior; instead of

using $email in the VTL you would use $!email. So the above example would look like the following:

<input type="text" name="email" value="$!email"/>

Example 4.11 A web input form with quiet notation

Now when the form is initially loaded and $email still has no value, an empty string will be output instead of

$email.

Formal and quiet reference notation can be used together:

<input type="text" name="email" value="$!{email}"/>

Example 4.12 A web input form using quiet and formal notation together

Caution

It is very easy to confuse the quiet reference notation with the boolean not-Operator. Using the

not-Operator, you use !${foo}, while the quiet reference notation is $!{foo}. And yes, you will end

up sometimes with !$!{foo}...
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5. Directives
References allow template designers to generate dynamic content for web sites, while directives permit web designers

to truly take charge of the appearance and content of the web site. A directive is a script element that can be used to

manipulate the rendering of the template.

As described above, Velocity directives are part of either single or multi-line statements and are preceded by a hash

sign (#). While the hash sign is technically not part of the directive, we will still speak about the #if or #set directive.

Velocity knows about the following directives:1

• #set (single-line statement)

• #literal (multi-line statement)

• #if / #elseif / #else (multi-line statement)

• #foreach (multi-line statement)

• #include (single-line statement)

• #parse (single-line statement)

• #stop (single-line statement)

• #macro (multi-line statement, see Chapter 7)

5.1 The #set directive
The #set directive is used for setting the value of a reference.

A value can be assigned to either a variable reference or a property reference.

## Assigning a variable value

#set( $fruit = "apple" )

## Assigning a property value

#set( $customer.Favourite = $fruit )

Example 5.1 Value assignment using the set directive

The left hand side (LHS) of the assignment must be a variable reference or a property reference. The right hand side

(RHS) can be one of the following types:

• Variable reference

• String literal

• Property reference

• Method reference

1If is possible to add custom directives through the Velocity configuration. These are merely the directives shipped with the default Velocity

configuration. It is even possible to turn some of these off.
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• Number literal

• List

• Map

• Expression

## variable reference

#set( $fruit = $selectedFruit )

## string literal

#set( $fruit.flavor = "sweet" )

## property reference

#set( $fruit.amount = $cart.total )

## method reference

#set( $fruit.color = $colorlist.selectColor($select) )

## number literal

#set( $fruit.value = 123 )

## List

#set( $fruit.sorts = ["Apple", "Pear", "Orange"] )

## Map

#set( $fruit.shapes = {"Apple" : "round", "Pear" : "conical"}) 

Example 5.2 Valid reference assignments

Note

For the List example the elements defined with the [..] operator are accessible using the methods

defined in the java.util.List class. So, for example, you could access the first element above using

$fruit.sorts.get(0).

Similarly, for the Map example, the elements defined within the {..} operator are accessible using

the methods defined in the java.util.Map class. You can access the first element above using

$fruit.shapes.get("Apple") to return the String round, or even $fruit.shapes.Apple

to return the same value.

The RHS can also be an arithmetic expression as described in the Math chapter below.

#set( $value = $foo + 1 )

#set( $value = $bar - 1 )

#set( $value = $foo * $bar )

#set( $value = $foo / $bar )

Example 5.3 Expression examples
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Assigning null values to references

In its default configuration, Velocity treats null values on the RHS special. If your developers don't change the

default configuration, you must understand that it is not possible to assign a null value through a set directive to a

reference. Starting with Velocity 1.5, a runtime property (directive.set.null.allowed) exists that removes

this restriction. If you do not want null values to be treated special, tell your application developers that they should

look up this property in the Velocity Developers Guide and set it to true.

Note

Removing this restriction is one of the new features of Velocity 1.5. If you are maintaining existing

template code from older Velocity versions, you probably want to keep the old behaviour.

For new developments based on Velocity 1.5 and beyond, we strongly recommend that you don't treat

null values on the RHS special (set directive.set.null.allowed to be true). This will be the

default behaviour in future Velocity versions.

The remainder of this chapter assumes that you kept the default configuration of Velocity.

If the RHS is a property or method reference that evaluates to null, it will not be assigned to the LHS and the LHS

will not be altered. This is very different from the behaviour in e.g. the Java programming language and needs some

discussion.

In the following piece of code, two queries are executed using the same set of template references:

#set( $result = $query.criteria("fruit") )

The result of the first query is $result

#set( $result = $query.criteria("customer") )

The result of the second query is $result

If $query.criteria("name") returns the string "apple", and $query.criteria("customer") returns

null, the above VTL will render as the follows:

The result of the first query is apple

The result of the second query is apple

In the second set directive, the RHS is null, because $query.criteria("customer") returned null. So the

RHS will not be modified (and the old value retained).

Unfortunately, this can lead to hard-to-detect errors, for example with #foreach loops that attempt to change a

reference using a #set directive, then immediately test that reference with an #if directive:

#set( $criteria = ["fruit", "customer"] )

#foreach( $criterion in $criteria )
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  #set( $result = $query.criteria($criterion) )

  #if( $result )

    Query was successful

  #end

#end

In the above example, it would not be wise to rely on the evaluation of $result to determine if a query was successful.

After $result has been set (added to the context), it cannot be set back to null (removed from the context).

One solution to this would be to reset the value of $result in every loop iteration:

#set( $criteria = ["name", "address"] )

#foreach( $criterion in $criteria )

  #set( $result = "" )

  #set( $result = $query.criteria($criterion) )

  #if( $result != "" )

    Query was successful

  #end

#end

However, the easiest way is to use the quiet reference notation:

#set( $criteria = ["name", "address"] )

#foreach( $criterion in $criteria )

  #set( $result = $!query.criteria($criterion) )

  #if( $result != "" )

    Query was successful

  #end

#end

If the query fails, $result gets the empty string assigned.



Directives

Velocity Version 1.5 Velocity Users Guide 21

String Literals

When using the #set directive, string literals that are enclosed in double quote characters will be parsed and rendered,

as shown:

#set( $directoryRoot = "www" )

#set( $templateName = "index.vm" )

#set( $template = "$directoryRoot/$templateName" )

$template

Example 5.4 Evaluating a double-quoted string literal

The output will be:

www/index.vm

However, when the string literal is enclosed in single quote characters, it will not be parsed:

#set( $fruit = "apple" )

$fruit

#set( $veggie = '$fruit' )

$veggie

Example 5.5 Single and double-quoted string literals

The output will be:

apple

$fruit

By default, rendering unparsed text using single quotes is activated in Velocity. This default can be changed by

changing the runtime.interpolate.string.literals property to be false. (See the Velocity Developers

Guide for more information).
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5.2 The #literal directive
The #literal directive allows you to easily use large chunks of uninterpreted content in VTL code. This can be

especially useful in place of escaping multiple directives. #literal is a multi-line statement and needs a #end directive

to close the statement body.

#literal()

#foreach ($fruit in $basket)

  nothing will happen to $fruit

#end

#end

Example 5.6 Using the #literal directive

The output will be:

#foreach ($fruit in $basket)

  nothing will happen to $fruit

#end

Even if the $fruit or $basket references have a value assigned, the text will still be output uninterpreted.

Caution

While #literal suppresses the evaluation of Velocity directives and references at run-time, the body

is still parsed. #literal is not a comment block, if you have a syntax error (e.g. a missing #end)

inside the block, Velocity will still report a parse error.
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5.3 Conditionals - #if/#elseif/#else
The #if directive in Velocity allows for text to be included when the web page is generated, on the conditional that

the #if statement is true. Consider the following piece of code:

#if( $display )

  <strong>Velocity!</strong>

#end

Example 5.7 Using the #if directive

The variable $display is evaluated to determine whether it is true, which will happen under one of two

circumstances:

• $display is a java.lang.Boolean object (True/False) which has a true value.

• The value is not null.

The Velocity context only contains Java objects, so any method that returns a boolean primitive will automatically

wrapped into a java.lang.Boolean object.

The content between the #if and the #end statements becomes the output if the evaluation is true. In this case, if

$display is true, the output will be: Velocity!. Conversely, if $display has a null value, or if it is a boolean

false, the statement evaluates as false, and there is no output.

An #elseif or #else element can be used with an #if element. Note that Velocity will stop at the first expression

that is found to be true:

#set ($direction = 15)

#set ($wind = 6)

#if( $direction < 10 )

  <strong>Go North</strong>

#elseif( $direction == 10 )

  <strong>Go East</strong>

#elseif( $wind == 6 )

  <strong>Go South</strong>

#else

  <strong>Go West</strong>

#end

Example 5.8 Using #if/#elseif/#else to select multiple template pieces

In this example, $direction is greater than 10, so the first two comparisons fail. Next $wind is compared to 6,

which is true, so the output is Go South.

When you wish to include text immediately following a #else directive you need to use curly brackets surrounding

the directive to differentiate it from the following text:
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#if( $foo == $bar)it is true!#{else}it is not!#end</li>

Example 5.9 The #if directive in formal notation

5.4 Loops - #foreach
#foreach iterates over the elements given in a List or Array element.

<ul>

  #foreach( $product in $allProducts )

    <li>$product</li>

  #end

</ul>

Example 5.10 A #foreach loop example

Unlike other languages, the Velocity templating language allows only loops where the number of iterations is

predetermined. There is no do..while or repeat..until loop in Velocity. This has been a conscious decision

to make sure that the rendering process of Velocity does always terminate2.

A VTL foreach loop takes two arguments, the first one is the loop variable and the second is an object that can be

iterated over. Velocity supports a number of object types in its default configuration3:

• Any array type

• java.lang.Collection - The loop iterates over the Iterator returned by obj.iterator()

• java.lang.Map - The loop will iterate over the values of the Map using the iterator returned by values().iterator()

• java.lang.Iterator - Velocity uses this iterator directly

• java.lang.Enumeration - Velocity wrapping the Enumeration into an Iterator

Warning

Using an Iterator or Enumeration object directly in a template has the side effect that the loop cannot be

evaluated multiple times because the loop consumes the object that gets iterated. Be especially careful if

you use such an object inside a Velocimacro or an included template.

Velocity provides you with a loop counter reference which contains the number of the current iteration of the loop:

<table>

  #foreach( $customer in $customerList )

    <tr><td>$velocityCount</td><td>$customer.Name</td></tr>

  #end

</table>

Example 5.11 Using the loop counter

2It is stil possible to write a template that contains endless loops. It is just harder.
3The list of objects can be changed and extended, please see the Velocity Developers Guide on how to do this.



Directives

Velocity Version 1.5 Velocity Users Guide 25

The default name for the loop counter and its starting value is specified through runtime settings. By default it starts at

1 and is called $velocityCount. If you need these values changed, consult your Java developers and the Velocity

Developers Guide.

# Default name of the loop counter

# variable reference.

directive.foreach.counter.name = velocityCount

# Default starting value of the loop

# counter variable reference.

directive.foreach.counter.initial.value = 1

The Velocity loop counter variable does support nested loops, so the following example would work as expected:

#foreach ($category in $allCategories)

  Category # $velocityCount is $category

  #foreach ($item in $allItems)

    Item # $velocitycount is $item

  #end

#end

Example 5.12 Nested Loops and the loop counter

The loop counter is local to its surrounding loop and any inner loops hides but not resets it. Please note that it is not

possible to access the count variable of the outer loop directly inside the inner loop4.

To avoid deadlocks and denial of service attacks, it is possible to set a maximum allowed number of times that a loop

may be executed. By default there is no limit, but it can be set to an arbitrary number in the Velocity configuration.

# The maximum allowed number of loops.

directive.foreach.maxloops = -1

4You can assign its value to another variable before entering the inner loop using #set and access it through this variable inside the inner loop.
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5.5 Stop template rendering - #stop
The #stop directive stops the rendering of a template. The remaining part of the template after this directive is

discarded. The most common usage of this directive is debugging templates5.

This part gets rendered in the output.

#stop

This part does not get rendered.

Example 5.13 Using #stop to end template rendering

The #stop directive can also be written as #stop().

Caution

While #stop ends the rendering process, it does not affect the template parsing. If you have a syntax

error in the VTL code after the #stop directive, this error will still be reported.

5.6 Loading resources
In Velocity, just as in other rendering techniques like JSP, it is important to build output from multiple input files. For

this, you need to be able to pull external resources into the rendering process.

Note

For convenience, we will talk about files in the reminder of this chapter. A template needs not to be a

file and strictly spoken, a template can be loaded from arbitrary sources including databases. Using files

for templates and referring to their names as file pathes with directories is just the most common way.

Velocity supports the loading of external templates by the #include and #parse directive, which both load external

resources into the rendering process of a template.

Velocity does not allow you to include arbitrary templates into your templates for security reasons. All included

elements will be loaded with a resource loader set up in the Velocity configuration. Please consult the Developers

Guide for information on how to do this.

5It is possible to do strange things by using the #stop directive inside #if ... #else ... #end blocks. As #stop only ends the rendering

if it is actually encountered, it is possible to skip over the directive.
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File inclusion - #include

The #include directive allows the template designer to import a local file. Its contents replace the #include

directive in the template. These contents are inserted as-is, they are not rendered through the template engine.

Multiple files can be loaded through a single #include directive, their names must be separated by commas.

## Load the file one.txt into this template

#include( "one.txt" )

## Load multiple files into this template

#include( "one.txt","two.txt","three.txt" )

Example 5.14 Including files into a Velocity Template

The file being included need not be referenced by name; in fact, it is often preferable to use a variable instead of a

filename. This could be useful for targeting output according to criteria determined when the page request is submitted.

#set ($seasonalgreetings = "christmas.txt")

#include( "greetings.txt", $seasonalgreetings )

Example 5.15 Including a file named by a variable reference

Template inclusion - #parse

The #parse directive works similar to #include, but the contents of the file will be part of the template rendering

process and all VTL elements in the file will be evaluted. The output will replace the #parse directive in the importing

template.

#parse( "one.vm" )

Example 5.16 Including an external template

Like the #include directive, #parse can take a variable rather than a template. Unlike the #include directive,

#parse will only take a single argument, you cannot load multiple templates with a single #parse directive.

Recursion is permitted; VTL templates can have #parse statements referring to templates that in turn have #parse

statements.

To avoid infinitive recursion, the number of levels is limited through a configuration property. It is not possible to

configure an infinite recursion depth. The default maximum number of recursions is 206.

# Maximum number of #parse levels

directive.parse.max.depth = 10

6As we said, we wanted to make it hard to write templates that contain endless loops. Allowing unlimited recursion would have been too easy.
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## ########################################

## Template "countdown.vm"

## ########################################

Count down.

#set( $count = 8 )

#parse( "counter.vm" )

All done with countdown.vm!

## ########################################

## ########################################

## Template "counter.vm

## ########################################

$count

#set( $count = $count - 1 )

#if( $count > 0 )

  #parse("counter.vm" )

#else

  All done with counter.vm!

#end

## ########################################

The resulting output:

Count down.

8

7

6

5

4

3

2

1

0

All done with counter.vm!

All done with countdown.vm!

Example 5.17 Parsing a recursive template
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6. Operators
Velocity knows a number of relational and logical operators. They can be used everywhere an expression is evaluated,

most prominently in #if and #set directives.

Each operator is available in two notations, a short version which is roughly equal to the Java notation and a text

representation which can be used to avoid problems e.g. with XML templates and the <, > and && operators.

#set ($a = true)

#set ($b = false)

#if ($a || $b)

  short version 'or' was true

#end

#if ($a and $b)

  text version 'and' was true

#end

Example 6.1 Using operators

Table 6.1. Velocity Relational and logical operators

Type of operator short version text version

equal1 == eq

not equal != ne

greater than > gt

greater or equal than >= ge

less than < lt

less or equal than <= le

logical and && and

logical or || or

logical not ! not

1Note that the semantics of the equal operator are slightly different than Java where == can only be used to test object equality. In Velocity the

equivalent operator can be used to directly compare numbers, strings, or objects. When the objects are of different classes, the string representations

are obtained by calling toString() for each object and then compared.
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Caution

Unlike other languages, Velocity does not consider the number 0 (zero) or the empty String ('') to

be equivalent to false. Only the boolean value false (primitive oder Boolean.FALSE) and null are

evaluated to false. Everything else evaluates to true.

This was a conscious decision by the Velocity designers and is not likely to change.

Here is a simple example to illustrate how the equivalent operator is used.

#set ($foo = "deoxyribonucleic acid")

#set ($bar = "ribonucleic acid")

#if ($foo == $bar)

  In this case it is clear they aren't equivalent. So...

#else

  They are not equivalent and this will be the output.

#end

Example 6.2 Using the equivalent operator

The text versions of all logical operators can be used to avoid problems with &, <, and > in XML templates.

6.1 The AND Operator

#if( $this && $that )

  <strong>This AND that</strong>

#end

Example 6.3 Using logical AND

The #if directive will only evaluate to true if both $this and $that are true. If $this is false, the expression will

evaluate to false; $that will not be evaluated. If $this is true, then Velocity will then check the value of $that;

if $that is true, then the entire expression is true and This AND that becomes the output. If $that is false, then

there will be no output as the entire expression is false.

6.2 The OR Operator
Logical OR operators work the same way as AND operators, except only one of the references need evaluate to true

in order for the entire expression to be considered true. Consider the following example:

#if( $this || $that )

  <strong>This OR That</strong>

#end

Example 6.4 Using logical OR
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If $this is true, the Velocity templating engine has no need to look at $that; whether $that is true or false, the

expression will be true, and This OR That will be output. If $this is false, however, $that must be checked. In this

case, if $that is also false, the expression evaluates to false and there is no output. On the other hand, if $that is

true, then the entire expression is true, and the output is This OR That

6.3 The NOT Operator
With logical NOT operators, there is only one argument:

#if( !$that )

  <strong>NOT that</strong>

#end

Example 6.5 Using logical NOT

Here, the if $that is true, then !$that evaluates to false, and there is no output. If $that is false, then !$that

evaluates to true and NOT that will be output. Be careful not to confuse this with the quiet reference $!foo.
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7. Velocity Macros
The #macro directive allows you to name a section of a VTL template and re-insert it multiple times into the template.

A Velocity macro (or short Velocimacro) can be used in many different scenarios.

In the following example, a Velocimacro is created to save keystrokes and minimize typographic errors:

#macro( d ) <tr><td></td></tr> #end

This example defines a Velocimacro called d. It now can be uses as any other VTL directive:

#d()

When this template is rendered, Velocity replaces #d() with the HTML table row containing a single, empty cell

defined above. Using a Velocimacro in a template is called macro invocation.

A Velocimacro definition starts with the #macro directive and are ended with #end. The enclosed block is the macro

body. Whenever a Velocimacro is invoked, its body is inserted in the template. It is rendered at every invokation

through the templating engine, with the invocation arguments replacing the arguments in the Velocimacro definition.

A Velocimacro can take any number of arguments including zero, but when it is invoked, it must be called with exactly

the same number of arguments that it was defined with.

Here is a Velocimacro that takes two arguments, a color and a list of objects:

#macro( tablerows $color $values )

  #foreach( $value in $values )

    <tr><td bgcolor=$color>$value</td></tr>

  #end

#end

#set( $greatlakes = ["Superior","Michigan","Huron","Erie","Ontario"] )

#set( $color = "blue" )

<table>

  #tablerows( $color $greatlakes )

</table>

Example 7.1 A macro that takes two arguments

The tablerows Velocimacro takes exactly two arguments. The first argument takes the place of $color, and the

second argument takes the place of $values. Anything that can be put into a VTL template can go into the body

of a Velocimacro.

Notice that $greatlakes takes the place of $values. When this template is rendered, the following output is

generated:
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<table>

<tr><td bgcolor="blue">Superior</td></tr>

<tr><td bgcolor="blue">Michigan</td></tr>

<tr><td bgcolor="blue">Huron</td></tr>

<tr><td bgcolor="blue">Erie</td></tr>

<tr><td bgcolor="blue">Ontario</td></tr>

</table>

In the example above, the #tablerows Velocimacro was defined as an inline macro. Another way to declare a macro

is in a Velocimacro library, it is then called a global macro. An inline Velocimacro is only visible in the template

where it is defined, a global Velocimacro is accessible from all templates. Global definitions must be done in a a

Velocimacro template library, which is a template file that contains the macros and they must be referenced explicitly

through the Velocity configuration. Please see the Velocity Reference Guide for more information on how to define

and load a macro library.

If the #tablerows($color $values) Velocimacro is defined a Velocimacro template library, it could be in

any template. In the fruit store it could be used to list fruits available:

#set( $fruits = ["apple", "pear", "orange", "strawberry"] )

#set($cellbgcol = "white" )

<table>

  #tablerows( $cellbgcol $fruits )

</table>

When rendering this template, Velocity would find the #tablerows Velocimacro in a template library (defined in

the Velocity configuration) and generate the following output:

<table>

  <tr><td bgcolor="white">apple</td></tr>

  <tr><td bgcolor="white">pear</td></tr>

  <tr><td bgcolor="white">orange</td></tr>

  <tr><td bgcolor="white">strawberry</td></tr>

</table>
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7.1 Velocimacro Arguments
Velocimacros can take as arguments any of the following VTL elements:

• A reference, starting with $

• A String literal, enclosed in single or double quotes

• A Number literal (1, 2, 3 etc.)

• An IntegerRange ([ 1..2] or [$start .. $end])

• An ObjectArray ([ "a", "b", "c"])

• true and false for boolean values representing true and false

When passing references as arguments to Velocimacros, please note that references are passed by name. This means

that their value is evaluated each time it is used inside the Velocimacro. This feature allows you to pass references

with method calls and have the method called at each use:

#macro( callme $a )

  $a $a $a

#end

#callme( $foo.bar() )

Example 7.2 Passing parameters by name

results in the method bar() of the reference $foo being called 3 times.

Caution

If you are used to the behaviour of method or procedure calls in programming languages like Java or

C, please be sure to fully understand the implications of passing by name. Unlike these programming

languages, the reference is not evaluated at macro invocation time but at every occurence inside the

Velocimacro. Don't treat Velocimacros as procedures or methods!

The easiest way to avoid any gotchas is not passing any stateful object into a Velocimacro. This can be done by

assigning the result of a method invocation to a new reference:

#set( $myval = $foo.bar() )

#callme( $myval )

Example 7.3 Resolving a stateful object before macro invocation
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7.2 Velocimacro Properties
There are a number of properties in the Velocity configuration that influence the behaviour of the Velocimacros. A

complete list of all configuration options is in the Velocity Reference Guide.

velocimacro.library

A comma-separated list of all Velocimacro template libraries. By default, Velocity looks for a single library:

VM_global_library.vm. The configured template path is used to find the Velocimacro libraries.

velocimacro.permissions.allow.inline

This property, which has possible values of true or false, determines whether Velocimacros can be defined in

regular templates. The default, true, allows template designers to define Velocimacros in the templates themselves.

velocimacro.permissions.allow.inline.to.replace.global

With possible values of true or false, this property allows the user to specify if a Velocimacro defined

inline in a template can replace a globally defined template, one that was loaded on startup via the

velocimacro.library property. The default, false, prevents Velocimacros defined inline in a template from

replacing those defined in the template libraries loaded at startup.

velocimacro.permissions.allow.inline.local.scope

This property, with possible values of true or false, defaulting to false, controls if Velocimacros defined inline are

'visible' only to the defining template. In other words, with this property set to true, a template can define inline

VMs that are usable only by the defining template. You can use this for fancy VM tricks - if a global VM calls

another global VM, with inline scope, a template can define a private implementation of the second VM that will

be called by the first VM when invoked by that template. All other templates are unaffected.

velocimacro.context.localscope

This property has the possible values true or false, and the default is false. When true, any modifications to the

context via #set() within a Velocimacro are considered 'local' to the Velocimacro, and will not permanently affect

the context.

velocimacro.library.autoreload

This property controls Velocimacro library autoloading. The default value is false. When set to true the source

Velocimacro library for an invoked Velocimacro will be checked for changes, and reloaded if necessary. This

allows you to change and test Velocimacro libraries without having to restart your application or servlet container,

just like you can with regular templates. This mode only works when caching is turned off in the resource loaders

(see the Velocity Reference Guide on how to do this). This feature is intended for development, not for production.
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7.3 Velocimacro Trivia
Q: Must a Velocimacro be defined before it can be used?

A: Yes. Velocimacros must be defined before they are first used in a template. This means that your inline #macro

declarations must be found by the engine before usage.

This is important to remember if you try to #parse a template containing inline #macro directives. Because

the #parse invocation happens at runtime, and the parser looks at the Velocimacro definitions earlier, at

parsetime. So loading a set of Velocimacro definitions using #parse does not work. If you need to use a set

of Velocimacros on more than one template, declare it as a Velocimacro Library in the Velocity configuration.

Q: Can I use a directive or another Velocimacro as an argument to a Velocimacro?

Example: #center( #bold("hello") )

A: No. A directive isn't a valid argument to a directive, and for most practical purposes, a Velocimacro is a directive.

However, there are things you can do. One easy solution is to take advantage of the fact that a doublequoted

string (") renders its contents. So you could do something like

#set($stuff = "#bold('hello')" )

#center( $stuff )

You can save a step...

#center( "#bold( 'hello' )" )

Please note that in the latter example the arg is evaluated inside the Velocimacro, not at the calling level. In

other words, the argument to the Velocimacro is passed in in its entirety and evaluated within the Velocimacro

it was passed into. This allows you to do things like:

#macro( inner $foo )

  inner: $foo

#end

#macro( outer $foo )

  #set($bar = "value")

  outer: $foo

#end

#set($bar = 'calltimelala')

#outer( "#inner($bar)" )

Where the output is
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Outer: inner: value

because the evaluation of the "#inner($bar)" happens inside #outer, so the $bar value set inside

#outer is the one that is used.

This is an intentional and jealously guarded feature - arguments are passed by name into Velocimacros, so you

can hand Velocimacros things like stateful references such as

#macro( foo $color )

  <tr bgcolor="$color"><td>Hi</td></tr>

  <tr bgcolor="$color"><td>There</td></tr>

#end

#foo($bar.rowColor() )

And have the rowColor() method called repeatedly, rather than just once. To avoid that, invoke the method

outside of the Velocimacro, and pass the value into the Velocimacro.

#set($color = $bar.rowColor())

#foo( $color )

Q: Can I register Velocimacros via #parse?

A: No. Currently, Velocimacros must be defined before they are first used in a template. This means that your

#macro declarations should come before using the Velocimacros.

This is important to remember if you try to #parse a template containing inline #macro directives. Because

the #parse happens at runtime, and the parser decides if a Velocimacro-looking element in the template is a

Velocimacro at parsetime, parseing a set of Velocimacro declarations won't work as expected. To get around

this, simply use the velocimacro.library facility to have Velocity load your Velocimacros at startup.

Q: What is Velocimacro Autoreloading?

A: There is a property, meant to be used in development, not production:

velocimacro.library.autoreload

which defaults to false. When set to true along with

type.resource.loader.cache = false

(where type is the name of the resource loader that you are using, such as file) then the Velocity engine will

automatically reload changes to your Velocimacro library files when you make them, so you do not have to

dump the servlet engine (or application) or do other tricks to have your Velocimacros reloaded.

Here is what a simple set of configuration properties would look like.

file.resource.loader.path = templates
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file.resource.loader.cache = false

velocimacro.library.autoreload = true

Activating auto-reload imposes a performance penalty and should be turned off in production.
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8. Miscellany

8.1 Formatting
Although VTL in this user guide is often displayed with newlines and whitespaces, the VTL shown below

#set( $fruits = ["apple", "pear", "orange", "strawberry"] )

#foreach( $fruit in $fruits )

  $fruit

#end

is equally valid as the following snippet:

Send me #set($foo=["$10 and ","a pie"])#foreach($a in $foo)$a#end please.

Velocity's behaviour is to gobble up excess whitespace. The preceding directive can be written as:

Send me

#set( $foo = ["$10 and ","a pie"] )

#foreach( $a in $foo )

$a

#end

please.

or as

Send me

#set($foo       = ["$10 and ","a pie"])

                #foreach            ($a in $foo )$a

         #end please.

In each case the output will be the same.
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8.2 Math
Velocity has a number of built-in math operators that can be used in templates with the #set directive. The following

equations are examples of addition, subtraction, multiplication and division, respectively:

#set( $foo = $bar + 3 )

#set( $foo = $bar - 4 )

#set( $foo = $bar * 6 )

#set( $foo = $bar / 2 )

When a division operation is performed between two integers, the result will be an integer. Any remainder can be

obtained by using the modulus (%) operator.

#set( $foo = $bar % 5 )
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8.3 Range Operator
The range operator can be used in conjunction with #set and #foreach statements. It creates an array of

java.lang.Integer objects: [n..m]

Both n and m must either be or produce integers. If m is greater than n, the range will count down:

## Example 1: 

#foreach( $cnt in [1..5] )

  $cnt

#end

Result: 1 2 3 4 5

## Example 2:

#foreach( $cnt in [2..-2] )

  $cnt

#end 

Result: 2 1 0 -1 -2

## Example 3:

#set( $range = [0..1] )

#foreach( $cnt in $range )

  $cnt

#end

Result: 0 1

## Example 4:

[1..3]

Result: [1..3] This is not a range (not in a #set or #foreach directive)

Example 8.1 Range examples

Note

As any other operator, the range operator is only evaluated in Velocity directives. This is why example

4 above does not evaluate the range operator.
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8.4 String Concatenation
String concatenation in VTL is a bit tricky, because it depends on the context in which a String should be concatenated.

Concatenating multiple references in the template output is done by simply putting them next to each other. The

references are evaluated and rendered to the output without any blanks between them.

#set( $size = "Big" )

#set( $name = "Ben" )

## Renders as 'The clock is BigBen.'

The clock is $size$name.

Example 8.2 String concatenation in Template output

To create a new String object that contains the evaluation of one or more references, use the #set directive and a

doublequoted string to concatenate the elements.

#set( $size = "Big" )

#set( $name = "Ben" )

#set($clock = "$size$name" )

## Renders as 'The clock is BigBen.'

The clock is $clock.

Example 8.3 String concatenation using #set

In this example, $clock is a new String object that contains the evaluation results of $size and $name. These can

be simple references as shown above or more complex elements like property or method references.

#set ($monthdays = [1..30])

#set ($description = "Days in April:")

#set ($result = "$description: $monthdays.size()")

## Renders as 'Days in April: 30'

$result

Example 8.4 Complex references and String concatenation
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