Velocity Users Guide

The Apache Velocity Developers

,Q' Velocity

Version 1.5

Copyright © 2006 The Apache Software Foundation

Table of Contents

T = = o PRSPPI 1
0 N o o | TS0 o L= 1

O o 10 T =0 o =1 =) S 1

1.3, INtENAEA AUGIENCE ...ceiie ettt et e e et et e e ta e e e e b e e et e e et e eanaeeanns 1

O = | o7 o 1

B VAV g TN = oot P 2
P T SN 0] S o = SRR UPTN 2

2.2. An introduction to the Velocity Template LangUagEccouuuuiiiiiiiiiiiii e 3

G B o 1= 1 o IV = Koo 1 V2T o g o L 4

3. LaNQUAEGE EEIMENLS ...ttt ettt et e e et e et et e e et e et e et e e e e ea e eanns 5
3.1, Statements aNd QIFECHIVESiiee i e e e e e e e e e e et e e ean s 5

I B = = 1= 0o SO PRTSPPN 7

I T 00411 01 011 ST 7

3.4, ESCaPING VTL ElEOMENES ...uuiiiiiiii ettt e et e e et e e e et eeeenan s 9

L = (= 00T PP 11
I o (= 0|1 1< £ TP 11

Y o) - 11

G T o o= (1= 12
Default property 100KUD FUIESt e e e e aanas 13
V= 1 T oL 14

4.5, ReEFErenCe MISCEIIANYovvniiii e e e e e e e e e e e e e et e e aeea 15
Separating identifiers and template tEXTooueiiiii e 15

QUIEL TEfEIrENCE NOLBLIONieeie e e e e e e e e e et e e et e e et a e e e e e eeenns 16

I B 1= ot Y= SRR 17
5.1, THE HSEE QIFECHIVE ...eee ettt e e e ettt e e e e e e e e es bbb eas 17
AsSIgning NUI VAIUES O FEFEIENCESuuniiiiii et 19

S T 0T 1 (= = 21

5.2. The HIteral irECLIVE ... et e e e e et e e e e eees 22

5.3. Conditionals - Af/HElSEITHEISEeee e 23

N oo oL = o] (=" o o 24

5.5. Stop template rendering = HSL0P .. ceuueeen it 26

5.6. LOAOING FESOUICESeettu ettt e ettt ettt ettt e ettt e e ettt e e et et e e et et e e et et e e e e et e e e e et e e eesbaas 26

FIle INCIUSION = HNCIUAEeevteee e e et e e e e 27

Template INCIUSION = HPAISE ...ttt et e e et e e e e e e e et e e et e eenas 27

OO ol = (] £ TP PP 29
L 1 N N (N @ = - (o S 30

W 1 SN O S O] 1= (o] S PP 30

5.3, THE NOT OPEIBIONeeetineteiti ettt ettt ettt ettt et e et et e ettt e e e et r e e e et e e e e et eas 31
A= Lo o1 YA\ - o (0 32
7.1, VElOCIMABECIO ATGQUITIENES ... et eeti ettt ettt e et e et et e et e e et e e et e et ba s e e ea e e et e e et e e etn e eebn e eannaaennaaes 34

7.2. VEOCIMACIO PrOPEITIES ...ttt et e e e e 35

PSR A= o o 100 o (o N I Y/ - PP 36

R RS o= | = | PSPPI 39
oI I o 00 111 o [PSPPSR 39

Velocity Version 1.5 Velocity Users Guide ii

Velocity Users Guide

8.3. Range Operator

8.4. String Concatenation

Velocity Version 1.5

Velocity Users Guide

1. Preface
1.1 About this Guide

TheVelocity Users Guideisintended to hel p page designers and content providers get acquainted with Velocity and the
syntax of its simple yet powerful scripting language, the Velocity Template Language (VTL). Many of the examples
in this guide deal with using VVelocity to embed dynamic content in web sites, but all examples are equally applicable
to other pages and templates.

Thanksfor choosing Velocity!

1.2 Acknowledgements

Thisguide has been compiled from the xdoc V ersion which wasincluded with Velocity upto version 1.4. Weexplicitly
acknowledgetheeffortsof all the contributors, especially Jason Van Zyl and John Casturain preparing thisfirst version.

1.3 Intended Audience

This guide is for you if you want to learn how to use the Velocity Templating Language (VTL). It is intended for
designers, template writers and devel opers that are familiar with creating content templates or web pages. If you want
to embed the Velocity engine into your own application, you probably want to consult the Vel ocity Developers Guide
availablefromht t p: // vel oci ty. apache. or g/ and usethis guide as areference.

1.4 Feedback

If you encounter any mistakes in this manual or have other feedback related to the Velocity Users Guide, please send
email to one of the Velocity mailing lists:

<user @el oci ty. apache. or g>
Thismailinglist isintended for discussion about using Velocity, e.g. writing templates or integrating Velocity into
your application. If you need clarification about the content of this guide or have questions about the examples,
please send them to thislist.

<dev@el oci ty. apache. org>
Thismailing list isintended for discussion about developing Velocity itself. If you found a mistake in this guide,
want to improve its contents or the formatting framework, please use this mailing list.

Please check aso the Velocity Homepage located at http://vel ocity. apache. org/ for up-to-date
information, new releases and general Velocity information.

Velocity Version 1.5 Velocity Users Guide 1

2. What is Velocity?

The Apache Velocity templating engine (or short Velocity is atemplate engine written in 100% pure Java. It permits
web page designers to reference methods defined in Java code. Template developers can work in parallel with Java
programmers to develop web sites according to the Model-View-Controller (MVC) model, meaning that they can
focus solely on creating templates, and programmers can focus solely on writing Java code. Velocity separates Java
code from the template pages, making a project more maintainable over the long run.

In aweb context, VVelocity provides aviable alternative to Java Server Pages (JSPs) or PHP.

Velocity can be used to generate web pages, Java source code, SQL, PostScript and other output from templates. It
can be used either as a standalone utility for generating source code and reports, or as a component integrated into
frameworks or larger applications.

Velocity provides template services for a number of other projects, e.g. the Turbine web application framework
(http://jakarta. apache. or g/ turbine/). In this context, Velocity offers a template service that allows
development of web applications according to atrue MV C model.

2.1 The Fruit Store

Suppose you are a page designer for an online store that specializes in selling fruits. Let's call it The Online Fruit
Sore. Customers place orders for various types and quantities of fruits. They login to your site using their username
and password, which allows them to view their orders and buy more fruits. Right now, apples on sale, which are very
popular. A minority of your customers regularly buy mangos, which are also on sale, though not as popular and usually
relegated to the margin of your web page. Information about each customer is tracked in a database, so one day the
guestion arises. Why not use Vel ocity to target special dealson fruit to the customerswho are most interested in those
types of fruits?

Velocity makes it easy to customize web pages to your online visitors. As a web site designer at The Online Fruit
Sore, you will modify the web page that the customer sees after logging into your site.

Y ou meet with software engineers at your company, and everyone has agreed that $cust oner will hold information
pertaining to the customer currently logged in and that $f r ui t Speci al will be al the types of fruit on sde at
present. The $pr onoTool object contains methods that help with promation.

For thetask at hand, let's concern ourselves only with these three references. Remember, you don't need to worry about
how the software engineers extract the necessary information from the database, you just need to know that it works.
Thislets you get on with your job, and lets the software engineers get on with theirs.

The next example shows how to display promotions using Velocity.

Velocity Version 1.5 Velocity Users Guide 2

What is Velocity?

<htm >
<body>
Hel | o $cust oner. Nane!
<t abl e>
#foreach($fruit in $fruit Special)
#if (S$custoner. hasPurchased($fruit))
<tr>
<t d>
$pronoTool . get Pronmo($fruit)
</td>
</[tr>
#end
#end
</tabl e>
</ body>
</htm >

Example 2.1 Displaying the promotions for the Fruit Sore

The exact details of the #f or each and #i f directive will be described in greater depth in the directives chapter;
what is important is the impact this short piece of code has on your web site. When a customer with a penchant for
mangoslogsin, and mangos are on sale, that iswhat this customer will see, prominently displayed. If another customer
with along history of apple purchases logs in, the notice of an apple sale will be front and center. The flexibility of
Velocity is enormous and limited only by your creativity.

This manual should help you get started with Velocity and the Velocity Template Language. It has a companion
manual, the Velocity Devel opers Guide, which describes how to integrate Velocity into your own web applications
(thisis what the software engineers at your company want to read).

2.2 An introduction to the Velocity Template
Language

The Velocity Template Language (VTL) is meant to provide an easy, simple and clean way to incorporate dynamic
content in aweb page. Even aweb page developer with little or no programming experience will soon be capable of
using VTL to incorporate dynamic content in aweb site.

VTL uses references to embed dynamic content in aweb site, and a variable is one type of reference. They can refer
to something defined in the Java code, or it can get its value from a VTL statement in the web page itself.

#set($a = "Velocity")

Example 2.2 A simple VTL statement

This VTL statement begins with the # character and contains a directive: set . When an online visitor requests your
web page, Velocity will search through your web pagetofind all # characters, then determinewhich mark the beginning
of VTL statements, and which of the # characters that have nothing to do with VTL.

Velocity Version 1.5 Velocity Users Guide 3

What is Velocity?

The # character is followed by a directive, set . The set directive uses an expression (enclosed in brackets) -- an
equation that assigns avalueto areference. The referenceislisted on the left hand side and its value on the right hand
side; the two are separated by an = character.

Inthe example above, thereferenceis$a and thevalueisVel oci t y. A reference always beginswith the $ character.

The value on the right side represents a string value. These are always enclosed in quotes, either single or double
guotes. Single quotes will ensure that the quoted value will be assigned to the reference as is. Double quotes allow
you to use Velocity references ot interpolate, such as" Hel | o $nane" , where the $nane will be replaced by its
current value before that string literal is assigned to the left hand side of the =.

The following rule of thumb may be useful to better understand how Vel ocity works: References begin with $ and are
used to get something. Directives begin with # and are used to do something.

Intheexample above, #set isusedto assign avalueto areference. Thereference, $a, can then be used in thetemplate
to output Vel oci ty.

2.3 Hello Velocity World!

Once a value has been assigned to a reference, you can use it anywhere in your HTML document. In the following
example, avalueis assigned to $nane and later referenced.

<ht M ><body>

#set ($nane = "Velocity")
Hel | o $nanme Worl d!

</ body></htm >

Example 2.3 "Hello World" using Velocity

Theresult is aweb page that reads

Hello Velocity Worl d!

To make statements containing VTL directives more readable, we encourage you to start each VTL statement on a
new line, although you are not required to do so.

Velocity Version 1.5 Velocity Users Guide 4

3. Language elements

Like other formal languages, Velocity consists of a number of elements:
» Statements and Directives

» References

» Comments

Each of these elements will be introduced in this chapter.

3.1 Statements and directives

Vel ocity directives are language elementsthan all ow the templ ate designer to mani pul ate the rendering of the templ ate.
A directiveis part of aVelocity statement:

Vel ocity single-line statenent
#Oset O(%a = 10)0O

Velocity nulti-line statenent

#0f oreachd($i in [0..10])0O
Counter is $i O

#endO

OO Beginof Velocity statement (hash symbol)
OO Veocity directive

OO Expression in brackets

O Multi-line statement body

0 Multi-line statement end

Velocity knows about single-line statements and multi-line statements.

A single-line statement starts with a single # character, followed by directive itself. Some directives also take
parameters in brackets. A single-line statement then ends immediately.

#set ($nane = "apple")
#i ncl ude(" header. htm ")
#par se(" header. vni)

#st op

Example 3.1 Vel ocity single-line statements

Velocity Version 1.5 Velocity Users Guide 5

Language elements

A multi-line statement starts like a single-line statement, but also has a statement body. This body ends with #end?.

#f oreach($i in [1..10])
The count is $i
#end

#literal
This is a literal block of text
#end

#if ($fruit == "apple")
This is an apple.
#el se
This is not an apple.
#end

Example 3.2 Velocity multi-line statements

Note

The #i f #el se/#end combo is a special case because it might contain multiple statement bodies
between its elements.

If you need to explicitly separate a Velocity directive from surrounding text, it is possible to wrap it in curly braces

({ and}):

#{set}($name = "apple")

#{foreach}($i in [1..10])
The count is $i
#{ end}

Example 3.3 Velacity directives in formal notation
All available Velocity directives are listed in the directives chapter.
Note

While the hash sign is technically not part of the directive, we will still speak about the #i f or #set
directive in the latter chapters.

1Techni(:ally speaking, the opening statement and #end can be on the same line. We will till call it a multi-line statement.

Velocity Version 1.5 Velocity Users Guide 6

Language elements

3.2 References

Velocity references are the glue which connect templates to the application. Template designers and application
developers must agree on a common set of references used by the Java application and the Vel ocity templates. Every
Velocity reference represents a Java object.

A Velocity reference startswith a$ character followed by an identifier name.

Sinple reference
The total anout is $total.

Property reference
You currently have $cart.itens Items in your Shopping cart.

Met hod reference
We of fer you a discount of $cart.cal cul ateD scount() for your purchase.

Creating a new reference from Vel ocity
#set (3l i nesPer Page = 20)

Example 3.4 Vel ocity references

If you need to separate areference identifier name from the surrounding template, you can wrap thereferenceidentifier
incurly braces ({ and}):

The total anput is ${total}.
You currently have ${cart.itens} lItens in your Shopping cart.

Example 3.5 Formal velocity references

Velocity references are discussed in depth in the references chapter.

3.3 Comments

Comments allow descriptive text to be included in atemplate that is not placed into the output of the template engine.
Comments are auseful way of reminding yourself and explaining to others what your VTL codeisdoing, or any other
purpose you find useful.

Like the Java programming language, Velocity has single-line and block comments.

A single-line comment begins with ## and finishes at the end of the line.

Velocity Version 1.5 Velocity Users Guide 7

Language elements

This is a single-line coment.

This is visible in the output ## This is a conment.

Example 3.6 Sngle-line comments

If youaregoing towrite afew linesof commentary, thereisno need to have numerous single-line comments. Multi-line
comments, which begin with #* and end with * #, are available to handle this scenario:

This is text that is outside the nulti-line coment.
Online visitors can see it.

#*
Thus begins a nulti-line conment. Online visitors will not
see this text because the Velocity tenplating engine wll
ignore it.

*H7

Here is text outside the nulti-line comment; it is visible.

Example 3.7 A multi-line comment
Multi-line comments can start and end in arbitrary columns of the template.

There is a third type of comment, the VTL comment block, which may be used to store such information as the
document author and versioning information. It is similar to the Javadoc comment block in the Java programming
language and starts with #* * .

#**

This is a VIL coment bl ock and

may be used to store such information
as the docunent author and versioning
i nformation:

@ut hor

@ersion 5

*H#

Example 3.8 A VTL comment block

Velocity Version 1.5 Velocity Users Guide 8

Language elements

3.4 Escaping VTL elements

Most of thetime, thereis no problem, rendering aVelocity template because the rendering engine is quite smart about
finding Velocity statements and references and distinguishing them from regular text.

Renders as normal text, because the dollar sign
is not followed by a letter.
| bought a 4 Ib. sack of potatoes for only $2.50!

Renders as vari abl e
| bought a 4 Ib. sack of potatoes for only $npney.

Example 3.9 Distinguishing between text and references

Velocity allows for explicit escaping of references and directives using the\ (backslash) character. If the character
following the\ would start a new directive or reference, then this character is output verbatim. This can lead to some
unexpected behaviour, especially with directives.

\ ## Renders as a single backslash (no # or $ foll ows)
\\ \# \$ ## Renders as \\ \# \$ (no directive or reference foll ows)

\ #end ## Renders as #end, backsl ash escapes an existing directive

Example 3.10 VTL escaping examples

Unfortunately, the escaping of VTL elements contains a number of quirks that make them actually hard to use’. As
you have seen, the behaviour of the\ differswhether adirective or just text follows:

$a ## $a is a reference but an unbound one (it has no val ue)
This renders as $a in the out put

\ $a ## Escapi ng an unbound reference renders it as \$a
#set ($a = 10) ## When a value is assigned to the reference...
$a ## ... then it renders as 10 ...

\ $a ## ... and gets escaped and now renders as $a.

Example 3.11 Escaping VTL references

Atis really mind-boggling how we came up with this. It is tied more to the internal workings of the Velocity engine than any user-friendlyness.
Thisis definitely subject to change in future Velocity versions. Until then, please be kind to our mistakes.

Velocity Version 1.5 Velocity Users Guide 9

Language elements

Escaping VTL statements works in the same way.

\ #end ## Renders as #end
\# end ## Renders as \# end (note the space)

\#set ($a = 10) ## Renders as #set ($a = 10)

|f $a has been assigned a val ue:

#set ($a = 10)

\#set ($a = 20) ## Renders as #set (10 = 20)

The backsl ash does not escape a whole multi-Iline statenment

This is a syntax error: (#end without a starting statenent)
\#i f ($a == 10)
#end

Example 3.12 Escaping VTL statements

Using Velocity Macros, the behaviour of escaping # changes a bit:3

#appl e ## Renders as #apple, because it is not a VIL
st at ement
\#apple ## Renders as \#apple

#macr o(appl e)
Appl e
#end

#appl e ## This is now a syntax error
(#appl e Vel oci macro i nvocati on needs brackets)

#appl e() ## Renders as Apple (invocation of a Vel oci macr o)

\ #appl e ## renders as #apple, because it is now a VIL
statenent after Vel ocimacro definition.

Example 3.13 Escaping Velocimacros

8...and you probably thought, the worst part was over...

Velocity Version 1.5 Velocity Users Guide

10

4. References

There are three types of references in the VTL: variables, properties and methods. They are the glue that connects
the business logic of your application written in Javato your templates. The Java code and the templates must use the
same set of references, so you as a template designer and the devel opers writing the application logic must agree on
the references available for use on the templates.

Every reference that is output when atemplate is rendered, is converted to a Java string by callingthet oSt ri ng()
method on the Java object which represents the reference. If you want a reference rendered in a specia way, you can
ask your Java developers to implement or override this method.

4.1 Identifiers

All references consist of aleading $ character followed by a VTL identifier. A VTL identifier must start with an
alphabetic character (a..z or A..Z). The rest of the characters are limited to the following types of characters:

» aphabetic(a. . z,A. . 2)
e numeric (0. . 9)
 hyphen and underscore (- and)

Velocity identifiers are, just as Java variable names, case-sensitive.

4.2 Variables

Variables are the simplest type of references, because each reference is also a variable. Each variable represents a
Java object.

$f oo
$har
$f oo- bar
$f 0o_bar
$f ooBar 1

Example 4.1 Valid variable hames

Velocity keeps an internal map from identifiers to variables called the context. The is the place where Java code can
put objects to be referenced from the template.

A variable must be assigned a value before it can be referenced from the template. Assigning a value to a Velocity
variable is the same as placing an object in the context from the Java code of your application.

Puts a String object representing "bar" in the context
#set ($foo = "bar")

Example 4.2 Creating a new context object

Velocity Version 1.5 Velocity Users Guide 11

References

Note

Assigning anew value using the #set statement to a variable does change the object present in the context.

4.3 Properties

Velocity alows you to access properties through a short-hand notation. The objects to look up the properties must be

available through aVelocity variable and the notation consists of aleading variablefollowed by thedot (. ") character
and another VTL identifier.

$cust omer . addr ess
$pur chase. t ot al
$cart . cust omer Di scount

Example 4.3 Valid property names
A property name can represent the following elements depending on the object used for look-up:

* |If the object has a method get <pr oper t y> where the property name is not modified, this method is invoked

» eseif the object is a Java bean (has methods conforming to the Sun Java Bean specification for accessing bean
properties), the bean getter is executed to access the value

« finaly if the object used to look up the property hasaget (St ri ng) method, invoke this method.

Takethefirst example, $cust oner . addr ess. It can have multiple meanings1

» when the object has amethod get addr ess() , invoke this method

» when the object is a Java bean with a property addr ess, invokeits getter, get Addr ess()

» when the object has amethod get (St ri ng) , invoke this method, passing addr ess as parameter.
» when the object hasamethod i sAddr ess() , invoke this method.

Note

When a property name refers to a getter method, $obj . property and $obj . Property will both
invoke the same method (either get pr operty() or get Property()). However, if the object
represented by $obj hasaget (Stri ng) method, $obj . property and $obj . Property will
pass different valuesto thisget (St ri ng) method. This can lead to hard-to-find problems.

It isagood practice to standardize the capitalization of property namesin your applicationz.

If you wonder about setting property values, please look up the #set () directive chapter. The setting of properties
is discussed there.

The sequence of these lookups is determined by the Velocity Uberspector. This is merely the default lookup. A Java developer can customize
this behaviour by using a custom Uberspector.

2While lots of the available Velocity literature uses upper-case capitalization, it is actually a good idea to use lower-case capitalization as thisis
consistent with JSTL and the regular bean property notation.

Velocity Version 1.5 Velocity Users Guide 12

References

Default property lookup rules

Velocity is quite clever when figuring out which method corresponds to a requested property3. It tries out different
alternatives based on several established naming conventions. The exact lookup sequence depends on whether or
not the property name starts with an upper-case letter. For lower-case names, such as $cust oner . addr ess, the
seguenceis:

» getaddress()

e get Address()

» get ("address")
* i sAddress()

For upper-case property nameslike $cust oner . Addr ess, it isdightly different:

» get Address()

e getaddress()

» get (" Address")
* i sAddress()

As regular bean properties tend to be written in lowercase notation, you should talk to your programmers that they
don't add both lower-case and upper-case methods to their objects. It would be a bad idea anyway.

1 Caution
There are some exotic naming cases, such asaproperty starting with multiple upper-caseletterswhich are
treated specially according to the Java Bean specification. Velocity does not conform to this specification
to the last letter, so if you have a method called get URL() , you cannot use $obj . ur | to invoke the
method, you must use $obj . URL or $obj . uRL. This might change in future versions of Velocity.

3some people would say that it is entirely too clever.

Velocity Version 1.5 Velocity Users Guide 13

References

4.4 Methods

A method is part of a context object, written in Java code, and is capable of doing something useful, like running a
calculation or arriving at a decision. Method invocation is indicated by round parentheses following the method name.
These parentheses can optionally contain a parameter list.

$cart.cal cul ateTot al ()
$cust oner . updat ePur chases($cart)
$shop. checkl nvent ory()
$cart.addTaxes(8, 16)

Property access

$page.set Title("My Home Page")
$cust onmer . get Addr ess()

$pur chase. get Tot al ()

Example 4.4 Valid method references

The last few examples are similar to the examples seen earlier when discussing properties. As stated there, the
properties notation is a short-hand notation for the invocation of bean getters and setters”.

The main difference between properties and methods is that you can specify a parameter list to a method.

$shop. get Frui ts()
$sun. get Pl anet s()
$al bum get ("1 0ogo")

$shop. set Cust omer ($cust oner)
$sun. set Pl anet Count (9)
$al bum put ("1 ogo", "new ogo")

equal property getters and setters
$shop. fruits

$sun. Pl anet s

$al bum | ogo

#set ($shop. custoner = S$cust oner)

#set ($sun. pl anet Count = 9)
#set (%al bum | ogo = "New Logo")

Example 4.5 Methods that can be used with shorthand notation

4By explicitly stating the method name and parameters, the Uberspector is not used. This is useful if you object has both, get (Stri ng) and
explicit property getter methods.

Velocity Version 1.5 Velocity Users Guide 14

References

. Warning
The last #set example will not work in Velocity versions before 1.5 unless the $al bum object
implementsj ava. uti | . Map. Thisisabug in older Velocity versions.

Not every method invocation can be replaced by short hand notation. Even if amethod iscalled set <pr opert y>()
or get <property>(), it must still adhere to bean getter and setter method signatures.

Can't pass a paraneter w th $sun. pl anet
$sun. get Pl anet (3)

Velocity only allows shorthand notation for getter and setter
$shop. order Frui ts()

Can't pass a paraneter |ist
$book. set Aut hor AndTitl e("George Orwel | ", "Homage to Catal oni a")

Example 4.6 Methods that can not be used with shorthand notation

4.5 Reference miscellany

Separating identifiers and template text

When writing templates, you might encounter situationsin which it is necessary to explicitly separate areference from
the surrounding template text. In the examples above, this was done implicitly through whitespace. Additionally there
isaformal notation which wraps the identifiers with curly braces:

${fruit}
${ cust oner . addr ess}
${ pur chase. get Tot al ()}

Example 4.7 Formal notation for Velocity references

Suppose you were building an extension to your fruit shop where juices are sold. $f r ui t contains the name of the
juice which should be sold. Using the shorthand notation would be inadequate for this task. Consider the following
example:

You have sel ected $fruitjuice.

Example 4.8 An ambiguous reference name

Thereisambiguity here, and Velocity assumesthat $f r ui t j ui ce, not $f r ui t , istheidentifier that you want to use.
Finding no valuefor $f rui t j ui ce, it will return $f rui t j ui ce. Using formal notation can resolve this problem.

You have selected ${fruit}juice.

Example 4.9 Using formal notation to resolve ambiguity

Velocity Version 1.5 Velocity Users Guide 15

References

Now Velocity knows that $f rui t, not $f rui tj ui ce, is the reference. Formal notation is often useful when
references are directly adjacent to text in atemplate.

Quiet reference notation

When Velocity encounters an undefined reference, its normal behavior is to output the image of the reference. For
exampl e, suppose the following reference appears as part of aVTL template.

<i nput type="text" nane="emmil" val ue="3$ennil"/>

Example 4.10 A web input form without quiet notation

When the form initially loads, the variable reference $emai | has no value, but you probably prefer ablank text field
to one with a value of $email. Using the quiet reference notation circumvents Velocity's normal behavior; instead of
using $emmi | inthe VTL you would use $! emai | . So the above example would ook like the following:

<i nput type="text" name="enmil" val ue="$!enmmil"/>

Example 4.11 A web input form with quiet notation

Now when the form is initially loaded and $enai | still has no value, an empty string will be output instead of
$enmi | .

Formal and quiet reference notation can be used together:

<i nput type="text" name="email" value="$!{email}"/>
Example 4.12 A web input form using quiet and formal notation together

1 Caution
It is very easy to confuse the quiet reference notation with the boolean not-Operator. Using the
not-Operator, you use! ${ f oo} , whilethe quiet reference notation is$! { f oo} . And yes, you will end
up sometimeswith ! $! { f 0o} ...

Velocity Version 1.5 Velocity Users Guide 16

5. Directives

References allow template designers to generate dynamic content for web sites, while directives permit web designers
to truly take charge of the appearance and content of the web site. A directive is a script element that can be used to
mani pulate the rendering of the template.

As described above, Velocity directives are part of either single or multi-line statements and are preceded by a hash
sign (#). Whilethe hash signistechnically not part of thedirective, wewill still speak about the#i f or#set directive.

Velocity knows about the following directives:*

» #set (single-line statement)

o #literal (multi-line statement)

« #if | #elseif | #el se (multi-line statement)
o #f or each (multi-line statement)

» #i ncl ude (single-line statement)

e #par se (single-line statement)

» #st op (single-line statement)

» #macr o (multi-line statement, see Chapter 7)

5.1 The #set directive

The#set directiveisused for setting the value of areference.

A value can be assigned to either a variable reference or a property reference.

Assigning a variabl e val ue
#set($fruit = "apple")

Assigning a property val ue
#set ($customer. Favourite = $fruit)

Example 5.1 Value assignment using the set directive

The left hand side (LHS) of the assignment must be a variable reference or a property reference. The right hand side
(RHS) can be one of the following types:

Variable reference
String literal

 Property reference
* Method reference

Yt is possible to add custom directives through the Velocity configuration. These are merely the directives shipped with the default Velocity
configuration. It is even possible to turn some of these off.

Velocity Version 1.5 Velocity Users Guide 17

Directives

* Number litera
o List

. Map

* Expression

vari abl e reference
#set($fruit = $selectedFruit)

string literal
#set ($fruit.flavor = "sweet")

property reference
#set($fruit.amount = $cart.total)

met hod reference
#set($fruit.color = $colorlist.sel ectCol or ($sel ect))

nunber literal
#set ($fruit.val ue

123)

Li st
#set ($fruit.sorts = ["Apple", "Pear", "Orange"])

Map
#set ($fruit.shapes = {"Apple" : "round", "Pear" : "conical"})

Example 5.2 Valid reference assignments

Note

For the List example the elements defined with the [. .] operator are accessible using the methods
definedinthej ava. uti | . Li st class. So, for example, you could accessthefirst element above using
$fruit.sorts. get(0).

Similarly, for the Map example, the elements defined within the { . . } operator are accessible using
the methods defined in the j ava. uti |l . Map class. You can access the first element above using
$frui t. shapes. get (" Appl e") toreturnthe Stringr ound, or even$f r ui t . shapes. Appl e
to return the same value.

The RHS can also be an arithmetic expression as described in the Math chapter below.

#set ($val ue
#set ($val ue
#set ($val ue
#set ($val ue

$foo + 1)
$bar - 1)
$foo * $bar)
$foo / $bar)

Example 5.3 Expression examples

Velocity Version 1.5 Velocity Users Guide 18

Directives

Assigning null values to references

In its default configuration, Velocity treats nul | values on the RHS special. If your developers don't change the
default configuration, you must understand that it is not possible to assign a null value through aset directiveto a
reference. Starting with Velocity 1.5, aruntime property (di r ecti ve. set. nul | . al | owed) existsthat removes
thisrestriction. If you do not want nul | valuesto be treated special, tell your application developers that they should
look up this property in the Velocity Developers Guide and set it to true.

Note

Removing this restriction is one of the new features of Velocity 1.5. If you are maintaining existing
template code from older Velocity versions, you probably want to keep the old behaviour.

For new developments based on Velocity 1.5 and beyond, we strongly recommend that you don't treat
null values on the RHS specia (set di recti ve. set. nul | . al | owed to betrue). Thiswill be the
default behaviour in future Velocity versions.

The remainder of this chapter assumes that you kept the default configuration of Velocity.

If the RHS is a property or method reference that evaluatesto nul | , it will not be assigned to the LHS and the LHS
will not be altered. Thisis very different from the behaviour in e.g. the Java programming language and needs some
discussion.

In the following piece of code, two queries are executed using the same set of template references:

#set ($result = $query.criteria("fruit"))
The result of the first query is $result

#set ($result = $query.criteria("customer"))
The result of the second query is $result

If $query. criteria("name") returnsthe string "apple’, and $query. criteri a("custoner") returns
null, the above VTL will render as the follows:

The result of the first query is apple

The result of the second query is apple

In the second set directive, the RHS is null, because $query. criteri a("custonmer") returned null. So the
RHS will not be modified (and the old value retained).

Unfortunately, this can lead to hard-to-detect errors, for example with #f or each loops that attempt to change a
reference using a#set directive, then immediately test that reference with an #i f directive:

#set ($criteria = ["fruit", "custoner"])

#foreach($criterion in $criteria)

Velocity Version 1.5 Velocity Users Guide 19

Directives

#set ($result = $query.criteria(Scriterion))
#if($result)

Query was successfu
#end

#end

Intheabove example, it would not bewiseto rely ontheevaluation of $r esul t todetermineif aquery wassuccessful.
After $r esul t has been set (added to the context), it cannot be set back to null (removed from the context).

One solution to this would be to reset the value of $r esul t in every loop iteration:

#set ($criteria = ["nanme", "address"])

#foreach($criterion in $criteria)

#set ($result
#set ($resul t

")

$query.criteria($criterion))

#if($result 1="")
Query was successfu
#end
#end

However, the easiest way is to use the quiet reference notation:

#set($criteria = ["nanme", "address"])

#f oreach($criterion in $criteria)

#set($result = $lquery.criteria($criterion))

#if($result '=""")
Query was successfu
#end
#end

If the query fails, $r esul t getsthe empty string assigned.

Velocity Version 1.5 Velocity Users Guide 20

Directives

String Literals

When using the#set directive, string literalsthat are enclosed in double quote characterswill be parsed and rendered,
as shown:

#set ($directoryRoot = "www')

#set (St enpl at eNane = "i ndex.vm')
#set ($tenplate = "$di rect oryRoot/ $t enpl at eNanme")
$tenpl at e

Example 5.4 Evaluating a double-quoted string literal

The output will be:

wwv i ndex. vm

However, when the string literal is enclosed in single quote characters, it will not be parsed:

#set($fruit = "apple")
$fruit

#set ($veggie = "$fruit')
$veggi e

Example 5.5 Single and double-quoted string literals

The output will be:

appl e

$fruit

By default, rendering unparsed text using single quotes is activated in Velocity. This default can be changed by
changing ther unti ne. i nterpol ate. string.literal s property to be false. (See the Velocity Developers
Guide for more information).

Velocity Version 1.5 Velocity Users Guide 21

Directives

5.2 The #literal directive

The#l i teral directive alows you to easily use large chunks of uninterpreted content in VTL code. This can be
especialy useful in place of escaping multiple directives. #literal is a multi-line statement and needs a #end directive
to close the statement body.

#literal ()

#f oreach ($fruit in $basket)
nothing will happen to $fruit

#end

#end

Example 5.6 Using the #l i t er al directive

The output will be:

#foreach ($fruit in $basket)
nothing will happen to $fruit
#end

Evenif the$f rui t or $basket references have avalue assigned, the text will still be output uninterpreted.

1 Caution
While#l i t er al suppressesthe evaluation of Velocity directives and references at run-time, the body
isstill parsed. #1 i t er al isnot a comment block, if you have a syntax error (e.g. a missing #end)

inside the block, Velocity will still report a parse error.

Velocity Version 1.5 Velocity Users Guide 22

Directives

5.3 Conditionals - #if/#elself/#else

The#i f directivein Velocity allows for text to be included when the web page is generated, on the conditional that
the#i f statement istrue. Consider the following piece of code:

#if($display)
Vel oci ty! </ strong>
#end

Example 5.7 Using the #i f directive

The variable $di spl ay is evauated to determine whether it is true, which will happen under one of two
circumstances:

» $di spl ay isaj ava. | ang. Bool ean object (True/Fase) which has atrue value.
* Thevalueisnot null.

The Velocity context only contains Java objects, so any method that returns a boolean primitive will automatically
wrapped into aj ava. | ang. Bool ean object.

The content between the #i f and the #end statements becomes the output if the evaluation is true. In this case, if
$di spl ay istrue, the output will be: Vel oci ty! . Conversely, if $di spl ay hasanull value, or if it isaboolean
false, the statement evaluates as false, and there is no output.

An#el sei f or#el se element can beused withan#i f element. Note that Velocity will stop at the first expression
that is found to be true:

#set ($direction = 15)
#set ($wi nd = 6)

#if($direction < 10)
Go Nort h
#el sei f($direction == 10)
CGo East
#el seif($wind == 6)
Go Sout h
#el se
CGo West
#end

Example 5.8 Using #if/#el seif/#el se to select multiple template pieces

In this example, $di r ect i on is greater than 10, so the first two comparisons fail. Next $wi nd is compared to 6,
which istrue, so the outputisGo Sout h.

When you wish to include text immediately following a#el se directive you need to use curly brackets surrounding
the directive to differentiate it from the following text:

Velocity Version 1.5 Velocity Users Guide 23

Directives

#if($foo == $bar)it is truel#{else}lit is not!#end

Example 5.9 The#i f directive in formal notation

5.4 Loops - #foreach
#f or each iterates over the elements given in aList or Array element.

#f or each($product in $all Products)
$product
#end

Example 5.10 A #f or each loop example

Unlike other languages, the Velocity templating language allows only loops where the number of iterations is
predetermined. Thereisnodo. . whi | e orrepeat . . unti | loopinVelocity. This has been a conscious decision

to make sure that the rendering process of Velocity does always termi nate’.

A VTL foreach loop takes two arguments, the first one is the loop variable and the second is an aobject that can be
iterated over. Velocity supports a number of object typesin its default confi guration3:

* Any array type

* java. | ang. Col | ecti on - Theloop iterates over the Iterator returned by obj.iterator()

e java. | ang. Map - Theloop will iterate over the values of the Map using theiterator returned by values().iterator()
* java.lang. | terator - Veocity usesthisiterator directly

* java.l ang. Enuner ati on - Veocity wrapping the Enumeration into an Iterator

. Warning
Using an Iterator or Enumeration object directly in atemplate has the side effect that the loop cannot be
evaluated multiple times because the loop consumes the object that getsiterated. Be especially careful if
you use such an object inside aVelocimacro or an included template.

Velocity provides you with aloop counter reference which contains the number of the current iteration of the loop:

<t abl e>
#f oreach($customer in $customerlList)
<t r><t d>$vel oci t yCount </t d><t d>$cust ormer . Nane</td></tr>
#end
</t abl e>

Example 5.11 Using the loop counter

21t is stil possible to write atemplate that contains endless loops. It isjust harder.
3Thelist of objects can be changed and extended, please see the Velocity Developers Guide on how to do this.

Velocity Version 1.5 Velocity Users Guide 24

Directives

The default name for the loop counter and its starting value is specified through runtime settings. By default it starts at
landiscaled $vel oci t yCount . If you need these values changed, consult your Java developers and the Vel ocity
Developers Guide.

Default nanme of the | oop counter
variabl e reference.
directive. foreach. counter. nanme = vel ocit yCount

Default starting value of the | oop
counter vari able reference.
directive.foreach.counter.initial.value =1

The Velocity loop counter variable does support nested loops, so the following example would work as expected:

#f oreach ($category in $all Categori es)
Category # $vel ocityCount is $category

#foreach ($itemin $allltens)
Item # $vel ocitycount is $item
#end

#end

Example 5.12 Nested Loops and the loop counter

The loop counter is local to its surrounding loop and any inner loops hides but not resets it. Please note that it is not
possible to access the count variable of the outer loop directly inside the inner 1oop”.

To avoid deadlocks and denial of service attacks, it is possible to set a maximum allowed number of times that aloop
may be executed. By default there is no limit, but it can be set to an arbitrary number in the VVelocity configuration.

The maxi mum al | owed nunber of | oops.
directive. foreach. maxl oops = -1

Y ou can assign its value to another variable before entering the inner loop using #set and access it through this variable inside the inner loop.

Velocity Version 1.5 Velocity Users Guide 25

Directives

5.5 Stop template rendering - #stop

The #st op directive stops the rendering of a template. The remaining part of the template after this directive is
discarded. The most common usage of this directive is debugging templates’.

This part gets rendered in the output.
#st op
This part does not get rendered.

Example 5.13 Using #st op to end template rendering

The#st op directive can also be written as#st op() .

s Caution

While #st op ends the rendering process, it does not affect the template parsing. If you have a syntax
error in the VTL code after the#st op directive, this error will still be reported.

5.6 Loading resources

In Velocity, just asin other rendering techniques like JSP, it isimportant to build output from multiple input files. For
this, you need to be able to pull external resources into the rendering process.

Note

For convenience, we will talk about files in the reminder of this chapter. A template needs not to be a
file and strictly spoken, atemplate can be loaded from arbitrary sources including databases. Using files
for templates and referring to their names as file pathes with directoriesisjust the most common way.

Velocity supportstheloading of external templatesby the#i ncl ude and#par se directive, which both load external
resources into the rendering process of atemplate.

Velocity does not allow you to include arbitrary templates into your templates for security reasons. All included
elements will be loaded with a resource loader set up in the Velocity configuration. Please consult the Developers
Guide for information on how to do this.

5Itispossibletodostrangethingsby using the#st op directiveinside#i f ... #el se ... #end blocks. As#st op only endstherendering
if it isactually encountered, it is possible to skip over the directive.

Velocity Version 1.5 Velocity Users Guide 26

Directives

File inclusion - #include

The #i ncl ude directive alows the template designer to import a local file. Its contents replace the #i ncl ude
directive in the template. These contents are inserted as-is, they are not rendered through the template engine.

Multiple files can be loaded through a single #include directive, their names must be separated by commas.

Load the file one.txt into this tenplate
#i ncl ude("one.txt")

Load nultiple files into this tenplate
#include("one.txt","two.txt","three.txt")

Example 5.14 Including files into a Velocity Template

The file being included need not be referenced by name; in fact, it is often preferable to use a variable instead of a
filename. This could be useful for targeting output according to criteria determined when the page request is submitted.

#set ($seasonal greetings = "christmas.txt")
#i ncl ude("greetings.txt", $seasonal greetings)

Example 5.15 Including a file named by a variable reference

Template inclusion - #parse

The#par se directive works similar to #i ncl ude, but the contents of the file will be part of the template rendering
processandall VTL elementsinthefilewill be evaluted. The output will replacethe#par se directiveintheimporting
template.

#parse("one.vnl)

Example 5.16 Including an external template

Likethe#i ncl ude directive, #par se can take a variable rather than atemplate. Unlike the #i ncl ude directive,
#par se will only take a single argument, you cannot load multiple templates with asingle #par se directive.

Recursion is permitted; VTL templates can have #par se statementsreferring to templatesthat in turn have #par se
statements.

To avoid infinitive recursion, the number of levels is limited through a configuration property. It is not possible to

configure an infinite recursion depth. The default maximum number of recursionsis 20°,

Maxi mum nunber of #parse |evels
directive. parse. max. depth = 10

5As we said, we wanted to make it hard to write templates that contain endless loops. Allowing unlimited recursion would have been too easy.

Velocity Version 1.5 Velocity Users Guide 27

Directives

H#Hit HHHHH B H TR
Tenpl ate "count down. vt

H# HHHBHHHHH AR R R R R R R R R
Count down.

#set ($count = 8)

#parse("counter.vni)

Al'l done w th countdown. v

Hit HHHBRHHH SRR AR R TR R AR AR

Hit HHHBRHHH SRR AR R TR R AR AR
Tenpl ate "counter.vm
H##t HHHHH T H
$count
#set ($count = $count - 1)
#if($count > 0)
#parse("counter.vm')
#el se
Al done with counter.vn
#end
H#H#t HHHHH TR H

The resulting output:

Count down.

O FRLP N WUl O N @

Al done with counter.vmnl
Al done with countdown. vm

Example 5.17 Parsing a recursive template

Velocity Version 1.5 Velocity Users Guide

6. Operators

Velocity knows anumber of relational and logical operators. They can be used everywhere an expression is evaluated,

most prominently in#i f and #set directives.

Each operator is available in two notations, a short version which is roughly equal to the Java notation and a text
representation which can be used to avoid problems e.g. with XML templates and the <, > and && operators.

#set ($a = true)
#set ($b = fal se)
#if ($a || $b)
short version 'or' was true
#end

#if ($a and $b)
text version 'and' was true
#end

Example 6.1 Using operators

Table 6.1. Velocity Relational and logical operators

Type of operator short version text version

equal == €q

not equal 1= ne

greater than > ot

greater or equal than >= ge

lessthan < It

less or equal than <= le

logical and && and

logical or [I or

logical not ! not

INote that the semantics of the equal operator are dlightly different than Java where == can only be used to test object equality. In Velocity the
equivalent operator can be used to directly compare numbers, strings, or objects. When the objects are of different classes, the string representations
are obtained by callingt oSt ri ng() for each object and then compared.

Velocity Version 1.5

Velocity Users Guide

29

Operators

. Caution

Unlike other languages, Velocity does not consider the number O (zero) or the empty String () to
be equivalent to false. Only the boolean value false (primitive oder Bool ean. FALSE) and null are
evaluated to false. Everything else evaluates to true.

This was a conscious decision by the Velocity designers and is not likely to change.

Here isasimple example to illustrate how the equivalent operator is used.

#set ($foo = "deoxyri bonucleic acid")
#set (S$bar “ri bonucl eic acid")

#if ($foo == $bar)

In this case it is clear they aren't equivalent. So..
#el se

They are not equivalent and this will be the output.
#end

Example 6.2 Using the equivalent operator

Thetext versions of al logical operators can be used to avoid problemswith &, <, and > in XML templates.

6.1 The AND Operator

#if($this & $that)
Thi s AND t hat </ strong>
#end

Example 6.3 Using logical AND

The#i f directivewill only evaluateto trueif both $t hi s and $t hat aretrue. If $t hi s isfalse, the expression will
evaluate to false; $t hat will not be evaluated. If $t hi s istrue, then Velocity will then check the value of $t hat ;
if $t hat istrue, then the entire expression is true and This AND that becomes the output. If $t hat isfalse, then
there will be no output as the entire expression is false.

6.2 The OR Operator

Logical OR operators work the same way as AND operators, except only one of the references need evaluate to true
in order for the entire expression to be considered true. Consider the following example:

#if($this || S$that)
Thi s OR That </ strong>
#end

Example 6.4 Using logical OR

Velocity Version 1.5 Velocity Users Guide 30

Operators

If $t hi s istrue, the Velocity templating engine has no need to look at $t hat ; whether $t hat istrue or false, the
expression will betrue, and This OR That will be output. If $t hi s isfase, however, $t hat must be checked. Inthis
case, if $t hat isalso false, the expression evaluates to false and there is no output. On the other hand, if $t hat is
true, then the entire expression istrue, and the output is This OR That

6.3 The NOT Operator

With logical NOT operators, there is only one argument:

#if(!'$that)
<st rong>NOT t hat </ strong>
#end

Example 6.5 Using logical NOT

Here, theif $t hat istrue, then! $t hat evauatesto false, and thereis no output. If $t hat isfalse, then! $t hat
evaluatesto trueand NOT t hat will be output. Be careful not to confuse this with the quiet reference $! f oo.

Velocity Version 1.5 Velocity Users Guide 31

7. Velocity Macros

The#macr o directive allowsyou to name asection of aVTL template and re-insert it multipletimesinto the templ ate.
A Velocity macro (or short Velocimacro) can be used in many different scenarios.

In the following example, aVVelocimacro is created to save keystrokes and minimize typographic errors:

#macro(d) <tr><td></td></tr> #end

This example defines aVelocimacro called d. It now can be uses as any other VTL directive:

#d()

When this template is rendered, Velocity replaces #d() with the HTML table row containing a single, empty cell
defined above. Using a Velocimacro in atemplate is called macro invocation.

A Velocimacro definition startswith the#macr o directive and are ended with #end. The enclosed block isthe macro
body. Whenever a Velocimacro is invoked, its body is inserted in the template. It is rendered at every invokation
through the templating engine, with the invocation arguments replacing the arguments in the V elocimacro definition.

A Velocimacro can take any number of argumentsincluding zero, but whenit isinvoked, it must be called with exactly
the same number of arguments that it was defined with.

HereisaVelocimacro that takes two arguments, a color and alist of objects:

#macro(tabl erows $col or $val ues)
#f oreach($val ue in $val ues)
<tr><td bgcol or =$col or >$val ue</ td></tr>
#end
#end

#set ($greatl akes = ["Superior","M chigan", "Huron","Erie","Ontario"])
#set ($color = "blue")

<t abl e>
#t abl er ows($col or $great! akes)
</ tabl e>

Example 7.1 A macro that takes two arguments

Thet abl er ows Velocimacro takes exactly two arguments. The first argument takes the place of $col or, and the
second argument takes the place of $val ues. Anything that can be put into a VTL template can go into the body
of aVelocimacro.

Notice that $gr eat | akes takes the place of $val ues. When this template is rendered, the following output is
generated:

Velocity Version 1.5 Velocity Users Guide 32

Velocity Macros

<t abl e>

<tr><td bgcol or="bl ue" >Superior</td></tr>
<tr><td bgcol or="bl ue">M chi gan</td></tr>
<tr><td bgcol or="bl ue">Huron</td></tr>
<tr><td bgcol or="blue">Erie</td></tr>
<tr><td bgcol or="bl ue">Ontario</td></tr>
</ tabl e>

Inthe example above, the#t abl er ows Velocimacro wasdefined asaninline macro. Another way to declareamacro
isin a Velocimacro library, it is then called a global macro. An inline Velocimacro is only visible in the template
where it is defined, a global Velocimacro is accessible from all templates. Global definitions must be done in a a
Velocimacro template library, which is atemplate file that contains the macros and they must be referenced explicitly
through the Velocity configuration. Please see the Velocity Reference Guide for more information on how to define
and load amacro library.

If the #t abl er ows($col or $val ues) Velocimacro is defined a VVelocimacro template library, it could be in
any template. In the fruit store it could be used to list fruits available;

#set ($fruits = ["apple", "pear", "orange", "strawberry"])
#set ($cel | bgcol = "white")
<t abl e>
#t abl erows($cel | bgcol $fruits)
</tabl e>

When rendering this template, Velocity would find the #t abl er ows Velocimacro in atemplate library (defined in
the Velocity configuration) and generate the following output:

<t abl e>
<tr><td bgcol or="white">apple</td></tr>
<tr><td bgcol or="white">pear</td></tr>
<tr><td bgcol or="white">orange</td></tr>
<tr><td bgcol or="white">strawberry</td></tr>
</ tabl e>

Velocity Version 1.5 Velocity Users Guide 33

Velocity Macros

7.1 Velocimacro Arguments

V elocimacros can take as arguments any of the following VTL elements:

A reference, starting with $

» A String literal, enclosed in single or double quotes

* A Number litera (1, 2, 3 etc)

¢ AnIntegerRange ([1..2] or [$start .. $end])

* An ObjectArray (["a’, "b", "c"])

* true andf al se for boolean values representing true and false

When passing references as arguments to V elocimacros, please note that references are passed by name. This means
that their value is evaluated each time it is used inside the Velocimacro. This feature allows you to pass references
with method calls and have the method called at each use:

#macro(callme $a)
$a $a %a
#end

#cal | me($foo. bar())

Example 7.2 Passing parameters by name

results in the method bar () of the reference $f oo being called 3 times.

1 Caution
If you are used to the behaviour of method or procedure calls in programming languages like Java or
C, please be sure to fully understand the implications of passing by name. Unlike these programming
languages, the reference is not evaluated at macro invocation time but at every occurence inside the
Velocimacro. Don't treat V elocimacros as procedures or methods!

The easiest way to avoid any gotchas is not passing any stateful object into a VVelocimacro. This can be done by
assigning the result of a method invocation to a new reference:

#set ($myval = $foo. bar())
#cal | me($myval)

Example 7.3 Resolving a stateful object before macro invocation

Velocity Version 1.5 Velocity Users Guide 34

Velocity Macros

7.2 Velocimacro Properties

There are a number of properties in the Velocity configuration that influence the behaviour of the Velocimacros. A
complete list of all configuration optionsisin the Velocity Reference Guide.

vel oci macro. library
A comma-separated list of all Velocimacro template libraries. By default, Velocity looks for a single library:
VM _gl obal _Ii brary. vm The configured template path is used to find the Velocimacro libraries.

vel oci macr 0. perm ssions. all ow.inline
This property, which has possible values of true or false, determines whether Velocimacros can be defined in
regular templates. The default, true, allowstemplate designersto define Vel ocimacrosin the templ ates themsel ves.

vel oci macr 0. perm ssions. allow.inline.to.repl ace. gl obal

With possible values of true or false, this property alows the user to specify if a Velocimacro defined
inline in a template can replace a globally defined template, one that was loaded on startup via the
vel oci macr o. | i brary property. The default, false, prevents Velocimacros defined inlinein atemplate from

replacing those defined in the template libraries loaded at startup.

vel oci macro. permni ssions. allow. inline.local.scope

This property, with possible values of true or false, defaulting to false, controlsif Velocimacros defined inline are
'visible' only to the defining template. In other words, with this property set to true, a template can define inline
VMs that are usable only by the defining template. Y ou can use this for fancy VM tricks - if aglobal VM cals
another global VM, with inline scope, atemplate can define a private implementation of the second VM that will

be called by the first VM when invoked by that template. All other templates are unaffected.

vel oci macr 0. cont ext. | ocal scope
This property has the possible values true or false, and the default is false. When true, any modifications to the
context via#set() within aVelocimacro are considered 'local* to the V elocimacro, and will not permanently affect
the context.

vel oci macro. li brary. aut or el oad

This property controls Velocimacro library autoloading. The default value is false. When set to true the source
Velocimacro library for an invoked Velocimacro will be checked for changes, and reloaded if necessary. This
allowsyou to change and test VVelocimacro libraries without having to restart your application or servlet container,
just like you can with regular templates. This mode only works when caching isturned off in the resource loaders

(seethe Velocity Reference Guide on how to do this). Thisfeatureisintended for development, not for production.

Velocity Version 1.5 Velocity Users Guide 35

Velocity Macros

7.3 Velocimacro Trivia

Q: Must aVelocimacro be defined before it can be used?

A: Yes. Velocimacros must be defined before they arefirst used in atemplate. Thismeansthat your inline#nacr o
declarations must be found by the engine before usage.

Thisisimportant to remember if you try to #par se atemplate containing inline #macr o directives. Because
the #par se invocation happens at runtime, and the parser looks at the Velocimacro definitions earlier, at
parsetime. So loading a set of Velocimacro definitions using #par se does not work. If you need to use a set
of Velocimacros on more than one template, declare it as a Velocimacro Library in the Velocity configuration.

Q: Canl useadirective or another Velocimacro as an argument to a Velocimacro?

Exanpl e: #center(#bold("hello"))

A: No. Adirectiveisn't avalid argument to adirective, and for most practical purposes, aVelocimacroisadirective.

However, there are things you can do. One easy solution is to take advantage of the fact that a doublequoted
string (") rendersiits contents. So you could do something like

#set ($stuff = "#bol d(' hello')")
#center($stuff)

Y ou can save a step...

#center("#bold('"hello")")

Please note that in the latter example the arg is evaluated inside the Velocimacro, not at the calling level. In
other words, the argument to the Velocimacro is passed in in its entirety and evaluated within the Velocimacro
it was passed into. This allows you to do things like:

#macro(inner $foo)
i nner: $foo

#end

#macro(outer $foo)

#set ($bar = "val ue")
outer: $foo

#end

#set ($bar = 'calltinelala')

#out er (" #i nner ($bar)")

Where the output is

Velocity Version 1.5 Velocity Users Guide 36

Velocity Macros

Quter: inner: value

because the evaluation of the " #i nner ($bar)" happens inside #out er, so the $bar vaue set inside
#out er istheonethat isused.

Thisisan intentional and jealously guarded feature - arguments are passed by name into Velocimacros, so you
can hand Velocimacros things like stateful references such as

#macro(foo $col or)
<tr bgcol or="$col or"><td>Hi </td></tr>
<tr bgcol or="%$col or"><td>There</td></tr>
#end

#f oo($bar. rowCol or ())

And have ther owCol or () method called repeatedly, rather than just once. To avoid that, invoke the method
outside of the Velocimacro, and pass the value into the V elocimacro.

#set ($col or = $bar.rowCol or())
#f oo($col or)

Q: Canl register Velocimacros via#par se?

No. Currently, Velocimacros must be defined before they are first used in a template. This means that your
#macr o declarations should come before using the Velocimacros.

Thisisimportant to remember if you try to #par se atemplate containing inline #macr o directives. Because
the #par se happens at runtime, and the parser decides if a VVelocimacro-looking element in the template is a
Velocimacro at parsetime, parseing a set of Velocimacro declarations won't work as expected. To get around
this, simply usethevel oci macro. | i br ary facility to have Velocity load your Velocimacros at startup.

Q: What isVelocimacro Autorel oading?

A: Thereisaproperty, meant to be usedin devel opnent , not production:
vel oci macro. |l i brary. aut or el oad
which defaults to false. When set to true along with
type. resour ce. | oader. cache = fal se

(where type is the name of the resource loader that you are using, such as file) then the Velocity engine will
automatically reload changes to your Velocimacro library files when you make them, so you do not have to
dump the servlet engine (or application) or do other tricks to have your Velocimacros rel oaded.

Hereiswhat asimple set of configuration properties would look like.

file.resource.loader.path = tenpl ates

Velocity Version 1.5 Velocity Users Guide 37

Velocity Macros

file.resource. | oader.cache = fal se
vel oci macro. library.autorel oad = true

Activating auto-rel oad imposes a performance penalty and should be turned off in production.

Velocity Version 1.5 Velocity Users Guide

38

8. Miscellany

8.1 Formatting

Although VTL inthisuser guideis often displayed with newlines and whitespaces, the VTL shown below

#set ($fruits = ["apple", "pear", "orange", "strawberry"])

#foreach($fruit in $fruits)
$fruit
#end

isequaly valid as the following snippet:

Send ne #set ($foo=["$10 and ","a pie"])#foreach($a in $f 0o) $a#end pl ease.
Velocity's behaviour isto gobble up excess whitespace. The preceding directive can be written as:

Send e

#set ($foo = ["$10 and ","a pie"])
#f oreach($a in $foo)

$a

#end

pl ease.

or as

Send e
#set ($f oo = ["$10 and ","a pie"])
#f or each ($a in $foo)%a
#end pl ease.

In each case the output will be the same.

Velocity Version 1.5 Velocity Users Guide 39

Miscellany

8.2 Math

Velocity hasanumber of built-in math operators that can be used in templates with the#set directive. The following
equations are examples of addition, subtraction, multiplication and division, respectively:

#set ($foo = $bar + 3)
#set ($foo = $bar - 4)
#set ($foo = $bar * 6)
#set ($foo = $bar / 2)

When a division operation is performed between two integers, the result will be an integer. Any remainder can be
obtained by using the modulus (%) operator.

#set ($foo = $bar %5)

Velocity Version 1.5 Velocity Users Guide 40

Miscellany

8.3 Range Operator

The range operator can be used in conjunction with #set and #f or each statements. It creates an array of
java.l ang. | nt eger objects: [n.. m

Both n and mmust either be or produce integers. If mis greater than n, the range will count down:

Exanple 1:

#foreach($cnt in [1..5])
$cnt

#end

Result: 1 2 3 45

Exanple 2:

#foreach($cnt in [2..-2])
$cnt

#end

Result: 210 -1 -2

Exanple 3:

#set ($range = [0..1])

#f oreach($cnt in $range)
$cnt

#end

Result: 0 1

Exanpl e 4:

[1..3]

Result: [1..3] This is not a range (not in a #set or #foreach directive)

Example 8.1 Range examples

Note

As any other operator, the range operator is only evaluated in Velocity directives. Thisis why example
4 above does not evaluate the range operator.

Velocity Version 1.5 Velocity Users Guide 41

Miscellany

8.4 String Concatenation

String concatenationin VTL isabit tricky, because it depends on the context in which a String should be concatenated.

Concatenating multiple references in the template output is done by simply putting them next to each other. The
references are evaluated and rendered to the output without any blanks between them.

#set ($si ze "Big")
#set ($nane = "Ben")

Renders as ' The clock is BigBen.'
The clock is $size$nane.

Example 8.2 Sring concatenation in Template output

To create a new String object that contains the evaluation of one or more references, use the #set directive and a
doublequoted string to concatenate the elements.

#set ($size = "Big")
#set ($name = "Ben")
#set ($cl ock = "$si ze$nanme")

Renders as ' The clock is BigBen.'
The clock is $cl ock.

Example 8.3 String concatenation using #s et

In thisexample, $cl ock isanew String object that contains the evaluation results of $si ze and $name. These can
be simple references as shown above or more complex elements like property or method references.

#set ($nmonthdays = [1..30])
#set ($description = "Days in April:")

#set ($result = "$description: $nont hdays. size()")

Renders as 'Days in April: 30
$resul t

Example 8.4 Complex references and String concatenation

Velocity Version 1.5 Velocity Users Guide 42

	Velocity Users Guide
	Table of Contents
	1. Preface
	1.1 About this Guide
	1.2 Acknowledgements
	1.3 Intended Audience
	1.4 Feedback

	2. What is Velocity?
	2.1 The Fruit Store
	2.2 An introduction to the Velocity Template Language
	2.3 Hello Velocity World!

	3. Language elements
	3.1 Statements and directives
	3.2 References
	3.3 Comments
	3.4 Escaping VTL elements

	4. References
	4.1 Identifiers
	4.2 Variables
	4.3 Properties
	Default property lookup rules

	4.4 Methods
	4.5 Reference miscellany
	Separating identifiers and template text
	Quiet reference notation

	5. Directives
	5.1 The #set directive
	Assigning null values to references
	String Literals

	5.2 The #literal directive
	5.3 Conditionals - #if/#elseif/#else
	5.4 Loops - #foreach
	5.5 Stop template rendering - #stop
	5.6 Loading resources
	File inclusion - #include
	Template inclusion - #parse

	6. Operators
	6.1 The AND Operator
	6.2 The OR Operator
	6.3 The NOT Operator

	7. Velocity Macros
	7.1 Velocimacro Arguments
	7.2 Velocimacro Properties
	7.3 Velocimacro Trivia

	8. Miscellany
	8.1 Formatting
	8.2 Math
	8.3 Range Operator
	8.4 String Concatenation

